File size: 16,548 Bytes
8778cfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import os

import numpy as np

import torch
import torch.nn as nn
import torch.nn.functional as F

from transformers import AutoConfig, AutoModel

from . import char_lstm
from . import decode_chart
from . import nkutil
from .partitioned_transformer import (
    ConcatPositionalEncoding,
    FeatureDropout,
    PartitionedTransformerEncoder,
    PartitionedTransformerEncoderLayer,
)
from . import parse_base
from . import retokenization
from . import subbatching


class ChartParser(nn.Module, parse_base.BaseParser):
    def __init__(
        self,
        tag_vocab,
        label_vocab,
        char_vocab,
        hparams,
        pretrained_model_path=None,
    ):
        super().__init__()
        self.config = locals()
        self.config.pop("self")
        self.config.pop("__class__")
        self.config.pop("pretrained_model_path")
        self.config["hparams"] = hparams.to_dict()

        self.tag_vocab = tag_vocab
        self.label_vocab = label_vocab
        self.char_vocab = char_vocab

        self.d_model = hparams.d_model

        self.char_encoder = None
        self.pretrained_model = None
        if hparams.use_chars_lstm:
            assert (
                not hparams.use_pretrained
            ), "use_chars_lstm and use_pretrained are mutually exclusive"
            self.retokenizer = char_lstm.RetokenizerForCharLSTM(self.char_vocab)
            self.char_encoder = char_lstm.CharacterLSTM(
                max(self.char_vocab.values()) + 1,
                hparams.d_char_emb,
                hparams.d_model // 2,  # Half-size to leave room for
                # partitioned positional encoding
                char_dropout=hparams.char_lstm_input_dropout,
            )
        elif hparams.use_pretrained:
            if pretrained_model_path is None:
                self.retokenizer = retokenization.Retokenizer(
                    hparams.pretrained_model, retain_start_stop=True
                )
                self.pretrained_model = AutoModel.from_pretrained(
                    hparams.pretrained_model
                )
            else:
                self.retokenizer = retokenization.Retokenizer(
                    pretrained_model_path, retain_start_stop=True
                )
                self.pretrained_model = AutoModel.from_config(
                    AutoConfig.from_pretrained(pretrained_model_path)
                )
            d_pretrained = self.pretrained_model.config.hidden_size

            if hparams.use_encoder:
                self.project_pretrained = nn.Linear(
                    d_pretrained, hparams.d_model // 2, bias=False
                )
            else:
                self.project_pretrained = nn.Linear(
                    d_pretrained, hparams.d_model, bias=False
                )

        if hparams.use_encoder:
            self.morpho_emb_dropout = FeatureDropout(hparams.morpho_emb_dropout)
            self.add_timing = ConcatPositionalEncoding(
                d_model=hparams.d_model,
                max_len=hparams.encoder_max_len,
            )
            encoder_layer = PartitionedTransformerEncoderLayer(
                hparams.d_model,
                n_head=hparams.num_heads,
                d_qkv=hparams.d_kv,
                d_ff=hparams.d_ff,
                ff_dropout=hparams.relu_dropout,
                residual_dropout=hparams.residual_dropout,
                attention_dropout=hparams.attention_dropout,
            )
            self.encoder = PartitionedTransformerEncoder(
                encoder_layer, hparams.num_layers
            )
        else:
            self.morpho_emb_dropout = None
            self.add_timing = None
            self.encoder = None

        self.f_label = nn.Sequential(
            nn.Linear(hparams.d_model, hparams.d_label_hidden),
            nn.LayerNorm(hparams.d_label_hidden),
            nn.ReLU(),
            nn.Linear(hparams.d_label_hidden, max(label_vocab.values())),
        )

        if hparams.predict_tags:
            self.f_tag = nn.Sequential(
                nn.Linear(hparams.d_model, hparams.d_tag_hidden),
                nn.LayerNorm(hparams.d_tag_hidden),
                nn.ReLU(),
                nn.Linear(hparams.d_tag_hidden, max(tag_vocab.values()) + 1),
            )
            self.tag_loss_scale = hparams.tag_loss_scale
            self.tag_from_index = {i: label for label, i in tag_vocab.items()}
        else:
            self.f_tag = None
            self.tag_from_index = None

        self.decoder = decode_chart.ChartDecoder(
            label_vocab=self.label_vocab,
            force_root_constituent=hparams.force_root_constituent,
        )
        self.criterion = decode_chart.SpanClassificationMarginLoss(
            reduction="sum", force_root_constituent=hparams.force_root_constituent
        )

        self.parallelized_devices = None

    @property
    def device(self):
        if self.parallelized_devices is not None:
            return self.parallelized_devices[0]
        else:
            return next(self.f_label.parameters()).device

    @property
    def output_device(self):
        if self.parallelized_devices is not None:
            return self.parallelized_devices[1]
        else:
            return next(self.f_label.parameters()).device

    def parallelize(self, *args, **kwargs):
        self.parallelized_devices = (torch.device("cuda", 0), torch.device("cuda", 1))
        for child in self.children():
            if child != self.pretrained_model:
                child.to(self.output_device)
        self.pretrained_model.parallelize(*args, **kwargs)

    @classmethod
    def from_trained(cls, model_path):
        if os.path.isdir(model_path):
            # Multi-file format used when exporting models for release.
            # Unlike the checkpoints saved during training, these files include
            # all tokenizer parameters and a copy of the pre-trained model
            # config (rather than downloading these on-demand).
            config = AutoConfig.from_pretrained(model_path).benepar
            state_dict = torch.load(
                os.path.join(model_path, "benepar_model.bin"), map_location="cpu"
            )
            config["pretrained_model_path"] = model_path
        else:
            # Single-file format used for saving checkpoints during training.
            data = torch.load(model_path, map_location="cpu")
            config = data["config"]
            state_dict = data["state_dict"]

        hparams = config["hparams"]

        if "force_root_constituent" not in hparams:
            hparams["force_root_constituent"] = True

        config["hparams"] = nkutil.HParams(**hparams)
        parser = cls(**config)
        parser.load_state_dict(state_dict)
        return parser

    def encode(self, example):
        if self.char_encoder is not None:
            encoded = self.retokenizer(example.words, return_tensors="np")
        else:
            encoded = self.retokenizer(example.words, example.space_after)

        if example.tree is not None:
            encoded["span_labels"] = torch.tensor(
                self.decoder.chart_from_tree(example.tree)
            )
            if self.f_tag is not None:
                encoded["tag_labels"] = torch.tensor(
                    [-100] + [self.tag_vocab[tag] for _, tag in example.pos()] + [-100]
                )
        return encoded

    def pad_encoded(self, encoded_batch):
        batch = self.retokenizer.pad(
            [
                {
                    k: v
                    for k, v in example.items()
                    if (k != "span_labels" and k != "tag_labels")
                }
                for example in encoded_batch
            ],
            return_tensors="pt",
        )
        if encoded_batch and "span_labels" in encoded_batch[0]:
            batch["span_labels"] = decode_chart.pad_charts(
                [example["span_labels"] for example in encoded_batch]
            )
        if encoded_batch and "tag_labels" in encoded_batch[0]:
            batch["tag_labels"] = nn.utils.rnn.pad_sequence(
                [example["tag_labels"] for example in encoded_batch],
                batch_first=True,
                padding_value=-100,
            )
        return batch

    def _get_lens(self, encoded_batch):
        if self.pretrained_model is not None:
            return [len(encoded["input_ids"]) for encoded in encoded_batch]
        return [len(encoded["valid_token_mask"]) for encoded in encoded_batch]

    def encode_and_collate_subbatches(self, examples, subbatch_max_tokens):
        batch_size = len(examples)
        batch_num_tokens = sum(len(x.words) for x in examples)
        encoded = [self.encode(example) for example in examples]

        res = []
        for ids, subbatch_encoded in subbatching.split(
            encoded, costs=self._get_lens(encoded), max_cost=subbatch_max_tokens
        ):
            subbatch = self.pad_encoded(subbatch_encoded)
            subbatch["batch_size"] = batch_size
            subbatch["batch_num_tokens"] = batch_num_tokens
            res.append((len(ids), subbatch))
        return res

    def forward(self, batch):
        valid_token_mask = batch["valid_token_mask"].to(self.output_device)

        if (
            self.encoder is not None
            and valid_token_mask.shape[1] > self.add_timing.timing_table.shape[0]
        ):
            raise ValueError(
                "Sentence of length {} exceeds the maximum supported length of "
                "{}".format(
                    valid_token_mask.shape[1] - 2,
                    self.add_timing.timing_table.shape[0] - 2,
                )
            )

        if self.char_encoder is not None:
            assert isinstance(self.char_encoder, char_lstm.CharacterLSTM)
            char_ids = batch["char_ids"].to(self.device)
            extra_content_annotations = self.char_encoder(char_ids, valid_token_mask)
        elif self.pretrained_model is not None:
            input_ids = batch["input_ids"].to(self.device)
            words_from_tokens = batch["words_from_tokens"].to(self.output_device)
            pretrained_attention_mask = batch["attention_mask"].to(self.device)

            extra_kwargs = {}
            if "token_type_ids" in batch:
                extra_kwargs["token_type_ids"] = batch["token_type_ids"].to(self.device)
            if "decoder_input_ids" in batch:
                extra_kwargs["decoder_input_ids"] = batch["decoder_input_ids"].to(
                    self.device
                )
                extra_kwargs["decoder_attention_mask"] = batch[
                    "decoder_attention_mask"
                ].to(self.device)

            pretrained_out = self.pretrained_model(
                input_ids, attention_mask=pretrained_attention_mask, **extra_kwargs
            )
            features = pretrained_out.last_hidden_state.to(self.output_device)
            features = features[
                torch.arange(features.shape[0])[:, None],
                # Note that words_from_tokens uses index -100 for invalid positions
                F.relu(words_from_tokens),
            ]
            features.masked_fill_(~valid_token_mask[:, :, None], 0)
            if self.encoder is not None:
                extra_content_annotations = self.project_pretrained(features)

        if self.encoder is not None:
            encoder_in = self.add_timing(
                self.morpho_emb_dropout(extra_content_annotations)
            )

            annotations = self.encoder(encoder_in, valid_token_mask)
            # Rearrange the annotations to ensure that the transition to
            # fenceposts captures an even split between position and content.

            annotations = torch.cat(
                [
                    annotations[..., 0::2],
                    annotations[..., 1::2],
                ],
                -1,
            )
        else:
            assert self.pretrained_model is not None
            annotations = self.project_pretrained(features)

        if self.f_tag is not None:
            tag_scores = self.f_tag(annotations)
        else:
            tag_scores = None

        fencepost_annotations = torch.cat(
            [
                annotations[:, :-1, : self.d_model // 2],
                annotations[:, 1:, self.d_model // 2 :],
            ],
            -1,
        )

        # Note that the bias added to the final layer norm is useless because
        # this subtraction gets rid of it
        span_features = (
            torch.unsqueeze(fencepost_annotations, 1)
            - torch.unsqueeze(fencepost_annotations, 2)
        )[:, :-1, 1:]
        span_scores = self.f_label(span_features)
        span_scores = torch.cat(
            [span_scores.new_zeros(span_scores.shape[:-1] + (1,)), span_scores], -1
        )
        return span_scores, tag_scores

    def compute_loss(self, batch):
        span_scores, tag_scores = self.forward(batch)
        span_labels = batch["span_labels"].to(span_scores.device)
        span_loss = self.criterion(span_scores, span_labels)
        # Divide by the total batch size, not by the subbatch size
        span_loss = span_loss / batch["batch_size"]
        if tag_scores is None:
            return span_loss
        else:
            tag_labels = batch["tag_labels"].to(tag_scores.device)
            tag_loss = self.tag_loss_scale * F.cross_entropy(
                tag_scores.reshape((-1, tag_scores.shape[-1])),
                tag_labels.reshape((-1,)),
                reduction="sum",
                ignore_index=-100,
            )
            tag_loss = tag_loss / batch["batch_num_tokens"]
            return span_loss + tag_loss

    def _parse_encoded(
        self, examples, encoded, return_compressed=False, return_scores=False
    ):
        with torch.no_grad():
            batch = self.pad_encoded(encoded)
            span_scores, tag_scores = self.forward(batch)
            if return_scores:
                span_scores_np = span_scores.cpu().numpy()
            else:
                # Start/stop tokens don't count, so subtract 2
                lengths = batch["valid_token_mask"].sum(-1) - 2
                charts_np = self.decoder.charts_from_pytorch_scores_batched(
                    span_scores, lengths.to(span_scores.device)
                )
            if tag_scores is not None:
                tag_ids_np = tag_scores.argmax(-1).cpu().numpy()
            else:
                tag_ids_np = None

        for i in range(len(encoded)):
            example_len = len(examples[i].words)
            if return_scores:
                yield span_scores_np[i, :example_len, :example_len]
            elif return_compressed:
                output = self.decoder.compressed_output_from_chart(charts_np[i])
                if tag_ids_np is not None:
                    output = output.with_tags(tag_ids_np[i, 1 : example_len + 1])
                yield output
            else:
                if tag_scores is None:
                    leaves = examples[i].pos()
                else:
                    predicted_tags = [
                        self.tag_from_index[i]
                        for i in tag_ids_np[i, 1 : example_len + 1]
                    ]
                    leaves = [
                        (word, predicted_tag)
                        for predicted_tag, (word, gold_tag) in zip(
                            predicted_tags, examples[i].pos()
                        )
                    ]
                yield self.decoder.tree_from_chart(charts_np[i], leaves=leaves)

    def parse(
        self,
        examples,
        return_compressed=False,
        return_scores=False,
        subbatch_max_tokens=None,
    ):
        training = self.training
        self.eval()
        encoded = [self.encode(example) for example in examples]
        if subbatch_max_tokens is not None:
            res = subbatching.map(
                self._parse_encoded,
                examples,
                encoded,
                costs=self._get_lens(encoded),
                max_cost=subbatch_max_tokens,
                return_compressed=return_compressed,
                return_scores=return_scores,
            )
        else:
            res = self._parse_encoded(
                examples,
                encoded,
                return_compressed=return_compressed,
                return_scores=return_scores,
            )
            res = list(res)
        self.train(training)
        return res