File size: 14,579 Bytes
6ed21b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
import argparse
import functools
import itertools
import os.path
import time

import torch

import numpy as np

from benepar import char_lstm
from benepar import decode_chart
from benepar import nkutil
from benepar import parse_chart
import evaluate
import learning_rates
import treebanks

def format_elapsed(start_time):
    elapsed_time = int(time.time() - start_time)
    minutes, seconds = divmod(elapsed_time, 60)
    hours, minutes = divmod(minutes, 60)
    days, hours = divmod(hours, 24)
    elapsed_string = "{}h{:02}m{:02}s".format(hours, minutes, seconds)
    if days > 0:
        elapsed_string = "{}d{}".format(days, elapsed_string)
    return elapsed_string


def make_hparams():
    return nkutil.HParams(
        # Data processing
        max_len_train=0,  # no length limit
        max_len_dev=0,  # no length limit
        # Optimization
        batch_size=32,
        learning_rate=0.00005,
        learning_rate_warmup_steps=160,
        clip_grad_norm=0.0,  # no clipping
        checks_per_epoch=4,
        step_decay_factor=0.5,
        step_decay_patience=5,
        max_consecutive_decays=3,  # establishes a termination criterion
        # CharLSTM
        use_chars_lstm=False,
        d_char_emb=64,
        char_lstm_input_dropout=0.2,
        # BERT and other pre-trained models
        use_pretrained=False,
        pretrained_model="bert-base-uncased",
        # Partitioned transformer encoder
        use_encoder=False,
        d_model=1024,
        num_layers=8,
        num_heads=8,
        d_kv=64,
        d_ff=2048,
        encoder_max_len=512,
        # Dropout
        morpho_emb_dropout=0.2,
        attention_dropout=0.2,
        relu_dropout=0.1,
        residual_dropout=0.2,
        # Output heads and losses
        force_root_constituent="auto",
        predict_tags=False,
        d_label_hidden=256,
        d_tag_hidden=256,
        tag_loss_scale=5.0,
    )


def run_train(args, hparams):
    import wandb
    wandb.init(project='german-delex-parser')

    if args.numpy_seed is not None:
        print("Setting numpy random seed to {}...".format(args.numpy_seed))
        np.random.seed(args.numpy_seed)

    # Make sure that pytorch is actually being initialized randomly.
    # On my cluster I was getting highly correlated results from multiple
    # runs, but calling reset_parameters() changed that. A brief look at the
    # pytorch source code revealed that pytorch initializes its RNG by
    # calling std::random_device, which according to the C++ spec is allowed
    # to be deterministic.
    seed_from_numpy = np.random.randint(2147483648)
    print("Manual seed for pytorch:", seed_from_numpy)
    torch.manual_seed(seed_from_numpy)

    hparams.set_from_args(args)
    print("Hyperparameters:")
    hparams.print()

    print("Loading training trees from {}...".format(args.train_path))
    train_treebank = treebanks.load_trees(
        args.train_path, args.train_path_text, args.text_processing
    )
    if hparams.max_len_train > 0:
        train_treebank = train_treebank.filter_by_length(hparams.max_len_train)
    print("Loaded {:,} training examples.".format(len(train_treebank)))

    print("Loading development trees from {}...".format(args.dev_path))
    dev_treebank = treebanks.load_trees(
        args.dev_path, args.dev_path_text, args.text_processing
    )
    if hparams.max_len_dev > 0:
        dev_treebank = dev_treebank.filter_by_length(hparams.max_len_dev)
    print("Loaded {:,} development examples.".format(len(dev_treebank)))

    print("Constructing vocabularies...")
    label_vocab = decode_chart.ChartDecoder.build_vocab(train_treebank.trees)
    if hparams.use_chars_lstm:
        char_vocab = char_lstm.RetokenizerForCharLSTM.build_vocab(train_treebank.sents)
    else:
        char_vocab = None

    tag_vocab = set()
    for tree in train_treebank.trees:
        for _, tag in tree.pos():
            tag_vocab.add(tag)
    tag_vocab = ["UNK"] + sorted(tag_vocab)
    tag_vocab = {label: i for i, label in enumerate(tag_vocab)}

    if hparams.force_root_constituent.lower() in ("true", "yes", "1"):
        hparams.force_root_constituent = True
    elif hparams.force_root_constituent.lower() in ("false", "no", "0"):
        hparams.force_root_constituent = False
    elif hparams.force_root_constituent.lower() == "auto":
        hparams.force_root_constituent = (
            decode_chart.ChartDecoder.infer_force_root_constituent(train_treebank.trees)
        )
        print("Set hparams.force_root_constituent to", hparams.force_root_constituent)

    print("Initializing model...")
    parser = parse_chart.ChartParser(
        tag_vocab=tag_vocab,
        label_vocab=label_vocab,
        char_vocab=char_vocab,
        hparams=hparams,
    )
    if args.parallelize:
        parser.parallelize()
    elif torch.cuda.is_available():
        parser.cuda()
    else:
        print("Not using CUDA!")

    print("Initializing optimizer...")
    trainable_parameters = [
        param for param in parser.parameters() if param.requires_grad
    ]
    optimizer = torch.optim.Adam(
        trainable_parameters, lr=hparams.learning_rate, betas=(0.9, 0.98), eps=1e-9
    )

    scheduler = learning_rates.WarmupThenReduceLROnPlateau(
        optimizer,
        hparams.learning_rate_warmup_steps,
        mode="max",
        factor=hparams.step_decay_factor,
        patience=hparams.step_decay_patience * hparams.checks_per_epoch,
        verbose=True,
    )

    clippable_parameters = trainable_parameters
    grad_clip_threshold = (
        np.inf if hparams.clip_grad_norm == 0 else hparams.clip_grad_norm
    )

    print("Training...")
    total_processed = 0
    current_processed = 0
    check_every = len(train_treebank) / hparams.checks_per_epoch
    best_dev_fscore = -np.inf
    best_dev_model_path = None
    best_dev_processed = 0

    start_time = time.time()

    def check_dev():
        nonlocal best_dev_fscore
        nonlocal best_dev_model_path
        nonlocal best_dev_processed

        dev_start_time = time.time()

        dev_predicted = parser.parse(
            dev_treebank.without_gold_annotations(),
            subbatch_max_tokens=args.subbatch_max_tokens,
        )
        dev_fscore = evaluate.evalb(args.evalb_dir, dev_treebank.trees, dev_predicted)
        wandb.log(
            {"dev-fscore": dev_fscore.fscore,
             "dev-recall": dev_fscore.recall,
             "dev-precision": dev_fscore.precision,
             "dev-completematch": dev_fscore.complete_match
             }
        )

        print(
            "dev-fscore {} "
            "dev-elapsed {} "
            "total-elapsed {}".format(
                dev_fscore,
                format_elapsed(dev_start_time),
                format_elapsed(start_time),
            )
        )

        if dev_fscore.fscore > best_dev_fscore:
            if best_dev_model_path is not None:
                extensions = [".pt"]
                for ext in extensions:
                    path = best_dev_model_path + ext
                    if os.path.exists(path):
                        print("Removing previous model file {}...".format(path))
                        os.remove(path)

            best_dev_fscore = dev_fscore.fscore
            best_dev_model_path = "{}_dev={:.2f}".format(
                args.model_path_base, dev_fscore.fscore
            )
            best_dev_processed = total_processed
            print("Saving new best model to {}...".format(best_dev_model_path))
            torch.save(
                {
                    "config": parser.config,
                    "state_dict": parser.state_dict(),
                    "optimizer": optimizer.state_dict(),
                },
                best_dev_model_path + ".pt",
            )

    data_loader = torch.utils.data.DataLoader(
        train_treebank,
        batch_size=hparams.batch_size,
        shuffle=True,
        collate_fn=functools.partial(
            parser.encode_and_collate_subbatches,
            subbatch_max_tokens=args.subbatch_max_tokens,
        ),
    )
    train_step = 0
    for epoch in itertools.count(start=1):
        epoch_start_time = time.time()

        for batch_num, batch in enumerate(data_loader, start=1):
            optimizer.zero_grad()
            parser.train()

            batch_loss_value = 0.0
            for subbatch_size, subbatch in batch:
                loss = parser.compute_loss(subbatch)
                loss_value = float(loss.data.cpu().numpy())
                batch_loss_value += loss_value
                if loss_value > 0:
                    loss.backward()
                del loss
                total_processed += subbatch_size
                current_processed += subbatch_size

            grad_norm = torch.nn.utils.clip_grad_norm_(
                clippable_parameters, grad_clip_threshold
            )

            optimizer.step()
            train_step += 1

            wandb.log(
                {'batch-loss': batch_loss_value,}
            )

            if train_step % 100 == 0:
                print(
                    "epoch {:,} "
                    "batch {:,}/{:,} "
                    "processed {:,} "
                    "batch-loss {:.4f} "
                    "grad-norm {:.4f} "
                    "epoch-elapsed {} "
                    "total-elapsed {}".format(
                        epoch,
                        batch_num,
                        int(np.ceil(len(train_treebank) / hparams.batch_size)),
                        total_processed,
                        batch_loss_value,
                        grad_norm,
                        format_elapsed(epoch_start_time),
                        format_elapsed(start_time),
                    )
                )

            if current_processed >= check_every:
                current_processed -= check_every
                check_dev()
                scheduler.step(metrics=best_dev_fscore)
            else:
                scheduler.step()

        if (total_processed - best_dev_processed) > (
            (hparams.step_decay_patience + 1)
            * hparams.max_consecutive_decays
            * len(train_treebank)
        ):
            print("Terminating due to lack of improvement in dev fscore.")
            break


def run_test(args):
    print("Loading test trees from {}...".format(args.test_path))
    test_treebank = treebanks.load_trees(
        args.test_path, args.test_path_text, args.text_processing
    )
    print("Loaded {:,} test examples.".format(len(test_treebank)))

    if len(args.model_path) != 1:
        raise NotImplementedError(
            "Ensembling multiple parsers is not "
            "implemented in this version of the code."
        )

    model_path = args.model_path[0]
    print("Loading model from {}...".format(model_path))
    parser = parse_chart.ChartParser.from_trained(model_path)
    if args.no_predict_tags and parser.f_tag is not None:
        print("Removing part-of-speech tagging head...")
        parser.f_tag = None
    if args.parallelize:
        parser.parallelize()
    elif torch.cuda.is_available():
        parser.cuda()

    print("Parsing test sentences...")
    start_time = time.time()

    test_predicted = parser.parse(
        test_treebank.without_gold_annotations(),
        subbatch_max_tokens=args.subbatch_max_tokens,
    )

    if args.output_path == "-":
        for tree in test_predicted:
            print(tree.pformat(margin=1e100))
    elif args.output_path:
        with open(args.output_path, "w") as outfile:
            for tree in test_predicted:
                outfile.write("{}\n".format(tree.pformat(margin=1e100)))

    # The tree loader does some preprocessing to the trees (e.g. stripping TOP
    # symbols or SPMRL morphological features). We compare with the input file
    # directly to be extra careful about not corrupting the evaluation. We also
    # allow specifying a separate "raw" file for the gold trees: the inputs to
    # our parser have traces removed and may have predicted tags substituted,
    # and we may wish to compare against the raw gold trees to make sure we
    # haven't made a mistake. As far as we can tell all of these variations give
    # equivalent results.
    ref_gold_path = args.test_path
    if args.test_path_raw is not None:
        print("Comparing with raw trees from", args.test_path_raw)
        ref_gold_path = args.test_path_raw

    test_fscore = evaluate.evalb(
        args.evalb_dir, test_treebank.trees, test_predicted, ref_gold_path=ref_gold_path
    )

    print(
        "test-fscore {} "
        "test-elapsed {}".format(
            test_fscore,
            format_elapsed(start_time),
        )
    )


def main():
    parser = argparse.ArgumentParser()
    subparsers = parser.add_subparsers()

    hparams = make_hparams()
    subparser = subparsers.add_parser("train")
    subparser.set_defaults(callback=lambda args: run_train(args, hparams))
    hparams.populate_arguments(subparser)
    subparser.add_argument("--numpy-seed", type=int)
    subparser.add_argument("--model-path-base", required=True)
    subparser.add_argument("--evalb-dir", default="EVALB/")
    subparser.add_argument("--train-path", default="data/wsj/train_02-21.LDC99T42")
    subparser.add_argument("--train-path-text", type=str)
    subparser.add_argument("--dev-path", default="data/wsj/dev_22.LDC99T42")
    subparser.add_argument("--dev-path-text", type=str)
    subparser.add_argument("--text-processing", default="default")
    subparser.add_argument("--subbatch-max-tokens", type=int, default=2000)
    subparser.add_argument("--parallelize", action="store_true")
    subparser.add_argument("--print-vocabs", action="store_true")

    subparser = subparsers.add_parser("test")
    subparser.set_defaults(callback=run_test)
    subparser.add_argument("--model-path", nargs="+", required=True)
    subparser.add_argument("--evalb-dir", default="EVALB/")
    subparser.add_argument("--test-path", default="data/wsj/test_23.LDC99T42")
    subparser.add_argument("--test-path-text", type=str)
    subparser.add_argument("--test-path-raw", type=str)
    subparser.add_argument("--text-processing", default="default")
    subparser.add_argument("--subbatch-max-tokens", type=int, default=500)
    subparser.add_argument("--parallelize", action="store_true")
    subparser.add_argument("--output-path", default="")
    subparser.add_argument("--no-predict-tags", action="store_true")

    args = parser.parse_args()
    args.callback(args)


if __name__ == "__main__":
    main()