Spaces:
Sleeping
Sleeping
File size: 14,579 Bytes
6ed21b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
import argparse
import functools
import itertools
import os.path
import time
import torch
import numpy as np
from benepar import char_lstm
from benepar import decode_chart
from benepar import nkutil
from benepar import parse_chart
import evaluate
import learning_rates
import treebanks
def format_elapsed(start_time):
elapsed_time = int(time.time() - start_time)
minutes, seconds = divmod(elapsed_time, 60)
hours, minutes = divmod(minutes, 60)
days, hours = divmod(hours, 24)
elapsed_string = "{}h{:02}m{:02}s".format(hours, minutes, seconds)
if days > 0:
elapsed_string = "{}d{}".format(days, elapsed_string)
return elapsed_string
def make_hparams():
return nkutil.HParams(
# Data processing
max_len_train=0, # no length limit
max_len_dev=0, # no length limit
# Optimization
batch_size=32,
learning_rate=0.00005,
learning_rate_warmup_steps=160,
clip_grad_norm=0.0, # no clipping
checks_per_epoch=4,
step_decay_factor=0.5,
step_decay_patience=5,
max_consecutive_decays=3, # establishes a termination criterion
# CharLSTM
use_chars_lstm=False,
d_char_emb=64,
char_lstm_input_dropout=0.2,
# BERT and other pre-trained models
use_pretrained=False,
pretrained_model="bert-base-uncased",
# Partitioned transformer encoder
use_encoder=False,
d_model=1024,
num_layers=8,
num_heads=8,
d_kv=64,
d_ff=2048,
encoder_max_len=512,
# Dropout
morpho_emb_dropout=0.2,
attention_dropout=0.2,
relu_dropout=0.1,
residual_dropout=0.2,
# Output heads and losses
force_root_constituent="auto",
predict_tags=False,
d_label_hidden=256,
d_tag_hidden=256,
tag_loss_scale=5.0,
)
def run_train(args, hparams):
import wandb
wandb.init(project='german-delex-parser')
if args.numpy_seed is not None:
print("Setting numpy random seed to {}...".format(args.numpy_seed))
np.random.seed(args.numpy_seed)
# Make sure that pytorch is actually being initialized randomly.
# On my cluster I was getting highly correlated results from multiple
# runs, but calling reset_parameters() changed that. A brief look at the
# pytorch source code revealed that pytorch initializes its RNG by
# calling std::random_device, which according to the C++ spec is allowed
# to be deterministic.
seed_from_numpy = np.random.randint(2147483648)
print("Manual seed for pytorch:", seed_from_numpy)
torch.manual_seed(seed_from_numpy)
hparams.set_from_args(args)
print("Hyperparameters:")
hparams.print()
print("Loading training trees from {}...".format(args.train_path))
train_treebank = treebanks.load_trees(
args.train_path, args.train_path_text, args.text_processing
)
if hparams.max_len_train > 0:
train_treebank = train_treebank.filter_by_length(hparams.max_len_train)
print("Loaded {:,} training examples.".format(len(train_treebank)))
print("Loading development trees from {}...".format(args.dev_path))
dev_treebank = treebanks.load_trees(
args.dev_path, args.dev_path_text, args.text_processing
)
if hparams.max_len_dev > 0:
dev_treebank = dev_treebank.filter_by_length(hparams.max_len_dev)
print("Loaded {:,} development examples.".format(len(dev_treebank)))
print("Constructing vocabularies...")
label_vocab = decode_chart.ChartDecoder.build_vocab(train_treebank.trees)
if hparams.use_chars_lstm:
char_vocab = char_lstm.RetokenizerForCharLSTM.build_vocab(train_treebank.sents)
else:
char_vocab = None
tag_vocab = set()
for tree in train_treebank.trees:
for _, tag in tree.pos():
tag_vocab.add(tag)
tag_vocab = ["UNK"] + sorted(tag_vocab)
tag_vocab = {label: i for i, label in enumerate(tag_vocab)}
if hparams.force_root_constituent.lower() in ("true", "yes", "1"):
hparams.force_root_constituent = True
elif hparams.force_root_constituent.lower() in ("false", "no", "0"):
hparams.force_root_constituent = False
elif hparams.force_root_constituent.lower() == "auto":
hparams.force_root_constituent = (
decode_chart.ChartDecoder.infer_force_root_constituent(train_treebank.trees)
)
print("Set hparams.force_root_constituent to", hparams.force_root_constituent)
print("Initializing model...")
parser = parse_chart.ChartParser(
tag_vocab=tag_vocab,
label_vocab=label_vocab,
char_vocab=char_vocab,
hparams=hparams,
)
if args.parallelize:
parser.parallelize()
elif torch.cuda.is_available():
parser.cuda()
else:
print("Not using CUDA!")
print("Initializing optimizer...")
trainable_parameters = [
param for param in parser.parameters() if param.requires_grad
]
optimizer = torch.optim.Adam(
trainable_parameters, lr=hparams.learning_rate, betas=(0.9, 0.98), eps=1e-9
)
scheduler = learning_rates.WarmupThenReduceLROnPlateau(
optimizer,
hparams.learning_rate_warmup_steps,
mode="max",
factor=hparams.step_decay_factor,
patience=hparams.step_decay_patience * hparams.checks_per_epoch,
verbose=True,
)
clippable_parameters = trainable_parameters
grad_clip_threshold = (
np.inf if hparams.clip_grad_norm == 0 else hparams.clip_grad_norm
)
print("Training...")
total_processed = 0
current_processed = 0
check_every = len(train_treebank) / hparams.checks_per_epoch
best_dev_fscore = -np.inf
best_dev_model_path = None
best_dev_processed = 0
start_time = time.time()
def check_dev():
nonlocal best_dev_fscore
nonlocal best_dev_model_path
nonlocal best_dev_processed
dev_start_time = time.time()
dev_predicted = parser.parse(
dev_treebank.without_gold_annotations(),
subbatch_max_tokens=args.subbatch_max_tokens,
)
dev_fscore = evaluate.evalb(args.evalb_dir, dev_treebank.trees, dev_predicted)
wandb.log(
{"dev-fscore": dev_fscore.fscore,
"dev-recall": dev_fscore.recall,
"dev-precision": dev_fscore.precision,
"dev-completematch": dev_fscore.complete_match
}
)
print(
"dev-fscore {} "
"dev-elapsed {} "
"total-elapsed {}".format(
dev_fscore,
format_elapsed(dev_start_time),
format_elapsed(start_time),
)
)
if dev_fscore.fscore > best_dev_fscore:
if best_dev_model_path is not None:
extensions = [".pt"]
for ext in extensions:
path = best_dev_model_path + ext
if os.path.exists(path):
print("Removing previous model file {}...".format(path))
os.remove(path)
best_dev_fscore = dev_fscore.fscore
best_dev_model_path = "{}_dev={:.2f}".format(
args.model_path_base, dev_fscore.fscore
)
best_dev_processed = total_processed
print("Saving new best model to {}...".format(best_dev_model_path))
torch.save(
{
"config": parser.config,
"state_dict": parser.state_dict(),
"optimizer": optimizer.state_dict(),
},
best_dev_model_path + ".pt",
)
data_loader = torch.utils.data.DataLoader(
train_treebank,
batch_size=hparams.batch_size,
shuffle=True,
collate_fn=functools.partial(
parser.encode_and_collate_subbatches,
subbatch_max_tokens=args.subbatch_max_tokens,
),
)
train_step = 0
for epoch in itertools.count(start=1):
epoch_start_time = time.time()
for batch_num, batch in enumerate(data_loader, start=1):
optimizer.zero_grad()
parser.train()
batch_loss_value = 0.0
for subbatch_size, subbatch in batch:
loss = parser.compute_loss(subbatch)
loss_value = float(loss.data.cpu().numpy())
batch_loss_value += loss_value
if loss_value > 0:
loss.backward()
del loss
total_processed += subbatch_size
current_processed += subbatch_size
grad_norm = torch.nn.utils.clip_grad_norm_(
clippable_parameters, grad_clip_threshold
)
optimizer.step()
train_step += 1
wandb.log(
{'batch-loss': batch_loss_value,}
)
if train_step % 100 == 0:
print(
"epoch {:,} "
"batch {:,}/{:,} "
"processed {:,} "
"batch-loss {:.4f} "
"grad-norm {:.4f} "
"epoch-elapsed {} "
"total-elapsed {}".format(
epoch,
batch_num,
int(np.ceil(len(train_treebank) / hparams.batch_size)),
total_processed,
batch_loss_value,
grad_norm,
format_elapsed(epoch_start_time),
format_elapsed(start_time),
)
)
if current_processed >= check_every:
current_processed -= check_every
check_dev()
scheduler.step(metrics=best_dev_fscore)
else:
scheduler.step()
if (total_processed - best_dev_processed) > (
(hparams.step_decay_patience + 1)
* hparams.max_consecutive_decays
* len(train_treebank)
):
print("Terminating due to lack of improvement in dev fscore.")
break
def run_test(args):
print("Loading test trees from {}...".format(args.test_path))
test_treebank = treebanks.load_trees(
args.test_path, args.test_path_text, args.text_processing
)
print("Loaded {:,} test examples.".format(len(test_treebank)))
if len(args.model_path) != 1:
raise NotImplementedError(
"Ensembling multiple parsers is not "
"implemented in this version of the code."
)
model_path = args.model_path[0]
print("Loading model from {}...".format(model_path))
parser = parse_chart.ChartParser.from_trained(model_path)
if args.no_predict_tags and parser.f_tag is not None:
print("Removing part-of-speech tagging head...")
parser.f_tag = None
if args.parallelize:
parser.parallelize()
elif torch.cuda.is_available():
parser.cuda()
print("Parsing test sentences...")
start_time = time.time()
test_predicted = parser.parse(
test_treebank.without_gold_annotations(),
subbatch_max_tokens=args.subbatch_max_tokens,
)
if args.output_path == "-":
for tree in test_predicted:
print(tree.pformat(margin=1e100))
elif args.output_path:
with open(args.output_path, "w") as outfile:
for tree in test_predicted:
outfile.write("{}\n".format(tree.pformat(margin=1e100)))
# The tree loader does some preprocessing to the trees (e.g. stripping TOP
# symbols or SPMRL morphological features). We compare with the input file
# directly to be extra careful about not corrupting the evaluation. We also
# allow specifying a separate "raw" file for the gold trees: the inputs to
# our parser have traces removed and may have predicted tags substituted,
# and we may wish to compare against the raw gold trees to make sure we
# haven't made a mistake. As far as we can tell all of these variations give
# equivalent results.
ref_gold_path = args.test_path
if args.test_path_raw is not None:
print("Comparing with raw trees from", args.test_path_raw)
ref_gold_path = args.test_path_raw
test_fscore = evaluate.evalb(
args.evalb_dir, test_treebank.trees, test_predicted, ref_gold_path=ref_gold_path
)
print(
"test-fscore {} "
"test-elapsed {}".format(
test_fscore,
format_elapsed(start_time),
)
)
def main():
parser = argparse.ArgumentParser()
subparsers = parser.add_subparsers()
hparams = make_hparams()
subparser = subparsers.add_parser("train")
subparser.set_defaults(callback=lambda args: run_train(args, hparams))
hparams.populate_arguments(subparser)
subparser.add_argument("--numpy-seed", type=int)
subparser.add_argument("--model-path-base", required=True)
subparser.add_argument("--evalb-dir", default="EVALB/")
subparser.add_argument("--train-path", default="data/wsj/train_02-21.LDC99T42")
subparser.add_argument("--train-path-text", type=str)
subparser.add_argument("--dev-path", default="data/wsj/dev_22.LDC99T42")
subparser.add_argument("--dev-path-text", type=str)
subparser.add_argument("--text-processing", default="default")
subparser.add_argument("--subbatch-max-tokens", type=int, default=2000)
subparser.add_argument("--parallelize", action="store_true")
subparser.add_argument("--print-vocabs", action="store_true")
subparser = subparsers.add_parser("test")
subparser.set_defaults(callback=run_test)
subparser.add_argument("--model-path", nargs="+", required=True)
subparser.add_argument("--evalb-dir", default="EVALB/")
subparser.add_argument("--test-path", default="data/wsj/test_23.LDC99T42")
subparser.add_argument("--test-path-text", type=str)
subparser.add_argument("--test-path-raw", type=str)
subparser.add_argument("--text-processing", default="default")
subparser.add_argument("--subbatch-max-tokens", type=int, default=500)
subparser.add_argument("--parallelize", action="store_true")
subparser.add_argument("--output-path", default="")
subparser.add_argument("--no-predict-tags", action="store_true")
args = parser.parse_args()
args.callback(args)
if __name__ == "__main__":
main()
|