Spaces:
Sleeping
Sleeping
from datetime import datetime | |
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from load_dataframe import get_data | |
def aggregated_data(df, aggregation_level="week"): | |
st.write(f"Aggregated data by {aggregation_level}") | |
# Create a column that indicates if a paper has any artifacts | |
df['has_artifact'] = (df['num_models'] > 0) | (df['num_datasets'] > 0) | (df['num_spaces'] > 0) | |
# Resample by week | |
freq = 'W' if aggregation_level == "week" else 'ME' | |
weekly_total_papers = df.resample(freq).size() | |
weekly_papers_with_artifacts = df.resample(freq)['has_artifact'].sum() | |
# Calculate the percentage of papers with artifacts | |
percentage_papers_with_artifacts = (weekly_papers_with_artifacts / weekly_total_papers) * 100 | |
# Calculate the growth rate | |
growth_rate = percentage_papers_with_artifacts.pct_change() * 100 | |
growth_rate = growth_rate.replace([float('inf'), float('-inf')], pd.NA).dropna() | |
# Display the average growth rate as a big number | |
average_growth_rate = growth_rate.mean() | |
st.metric(label=f"{aggregation_level.capitalize()}ly Average Growth Rate", value=f"{average_growth_rate:.2f}%") | |
# Create the plot | |
plt.figure(figsize=(12, 6)) | |
plt.plot(percentage_papers_with_artifacts.index, percentage_papers_with_artifacts, marker='o', linestyle='-', color='b', label='Percentage of Papers with on least 1 Artifact') | |
# Set the y-axis limits | |
plt.ylim(0, 100) | |
plt.xlabel(aggregation_level) | |
plt.ylabel('Percentage') | |
plt.title('Percentage of Papers with Artifacts (Models, Datasets, Spaces) Over Time') | |
plt.legend() | |
plt.grid(True) | |
# Use Streamlit to display the plot | |
st.pyplot(plt) | |
def display_data(df): | |
df['has_artifact'] = (df['num_models'] > 0) | (df['num_datasets'] > 0) | (df['num_spaces'] > 0) | |
num_artifacts = df['has_artifact'].sum() | |
percentage_of_at_least_one_artifact = num_artifacts / df.shape[0] if df.shape[0] > 0 else 0 | |
percentage_of_at_least_one_artifact = round(percentage_of_at_least_one_artifact * 100, 2) | |
# add reached out and reached out link columns | |
df['reached_out'] = [False for _ in range(df.shape[0])] | |
df["reached_out_link"] = ["" for _ in range(df.shape[0])] | |
st.markdown(f""" | |
## {percentage_of_at_least_one_artifact}% papers with at least one π€ artifact | |
* Number of papers: {df.shape[0]} | |
* Number of papers with a Github link: {df['github'].notnull().sum()} | |
* Number of papers with at least one HF artifact: {num_artifacts} | |
""") | |
st.write("Papers with at least one artifact") | |
st.data_editor(df[df['has_artifact']], | |
hide_index=True, | |
column_order=("reached_out", "reached_out_link", "paper_page", "title", "github", "num_models", "num_datasets", "num_spaces"), | |
column_config={"github": st.column_config.LinkColumn(), | |
"paper_page": st.column_config.LinkColumn(), | |
"paper_page_with_title": st.column_config.LinkColumn(display_text=r'\|(.*)')}, | |
width=2000, | |
key="papers_with_artifacts") | |
st.write("Papers without artifacts") | |
st.data_editor(df[~df['has_artifact']], | |
hide_index=True, | |
column_order=("reached_out", "reached_out_link", "paper_page", "title", "github", "num_models", "num_datasets", "num_spaces"), | |
column_config={"github": st.column_config.LinkColumn(), | |
"paper_page": st.column_config.LinkColumn()}, | |
width=2000, | |
key="papers_without_artifacts") | |
st.write("Papers with a HF mention in README but no artifacts") | |
st.data_editor(df[(df['hf_mention'] == 1) & (~df['has_artifact'])], | |
hide_index=True, | |
column_order=("reached_out", "reached_out_link", "paper_page", "title", "github", "num_models", "num_datasets", "num_spaces"), | |
column_config={"github": st.column_config.LinkColumn(), | |
"paper_page": st.column_config.LinkColumn()}, | |
width=2000, | |
key="papers_with_hf_mention_no_artifacts") | |
def main(): | |
st.title("Hugging Face Artifacts KPI Dashboard") | |
# 2 tabs: one for daily data, one for weekly data | |
st.sidebar.title("Navigation") | |
selection = st.sidebar.selectbox("Go to", ["Daily/weekly/monthly data", "Aggregated data"]) | |
# TODO use this instead | |
df = get_data() | |
print(df.head()) | |
# df = pd.read_csv('daily_papers_enriched (3).csv') | |
df = df.drop(['Unnamed: 0'], axis=1) if 'Unnamed: 0' in df.columns else df | |
# Use date as index | |
# df = df.set_index('date') | |
# df.index = pd.to_datetime(df.index) | |
df = df.sort_index() | |
if selection == "Daily/weekly/monthly data": | |
# Button to select day, month or week | |
# Add streamlit selectbox. | |
view_level = st.selectbox(label="View data per day, week or month", options=["day", "week", "month"]) | |
if view_level == "day": | |
# make a button to select the day, defaulting to today | |
day = st.date_input("Select day", value="today", format="DD/MM/YYYY") | |
# convert to the day of a Pandas Timestamp | |
day = pd.Timestamp(day) | |
df = df[df.index.date == day.date()] | |
st.write(f"Showing data for {day.day_name()} {day.strftime('%d/%m/%Y')}") | |
display_data(df) | |
elif view_level == "week": | |
# make a button to select the week | |
week_number = st.number_input("Select week", value=datetime.today().isocalendar()[1], min_value=1, max_value=52) | |
# Extract week number from the index | |
df['week'] = df.index.isocalendar().week | |
# Filter the dataframe for the desired week number | |
df = df[df['week'] == week_number] | |
st.write(f"Showing data for week {week_number}") | |
display_data(df) | |
elif view_level == "month": | |
# make a button to select the month, defaulting to current month | |
month_str = st.selectbox("Select month", options=["January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December"]) | |
year_str = st.selectbox("Select year", options=["2024"]) | |
# Filter the dataframe for the desired week number | |
month_map = { | |
'January': 1, 'February': 2, 'March': 3, 'April': 4, | |
'May': 5, 'June': 6, 'July': 7, 'August': 8, | |
'September': 9, 'October': 10, 'November': 11, 'December': 12 | |
} | |
# Convert month string to number | |
month = month_map[month_str] | |
year = int(year_str) | |
df = df[(df.index.month == month) & (df.index.year == year)] | |
st.write(f"Showing data for {month_str} {year_str}") | |
display_data(df) | |
elif selection == "Aggregated data": | |
aggregated_data(df) | |
aggregated_data(df, aggregation_level="month") | |
else: | |
st.write("Error: selection not recognized") | |
if __name__ == "__main__": | |
main() |