nielsr's picture
nielsr HF staff
More improvements
99a2513
raw
history blame
7.52 kB
from datetime import datetime
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
from load_dataframe import get_data
def aggregated_data(df, aggregation_level="week"):
st.write(f"Aggregated data by {aggregation_level}")
# Create a column that indicates if a paper has any artifacts
df['has_artifact'] = (df['num_models'] > 0) | (df['num_datasets'] > 0) | (df['num_spaces'] > 0)
# Resample by week
freq = 'W' if aggregation_level == "week" else 'ME'
weekly_total_papers = df.resample(freq).size()
weekly_papers_with_artifacts = df.resample(freq)['has_artifact'].sum()
# Calculate the percentage of papers with artifacts
percentage_papers_with_artifacts = (weekly_papers_with_artifacts / weekly_total_papers) * 100
# Calculate the growth rate
growth_rate = percentage_papers_with_artifacts.pct_change() * 100
growth_rate = growth_rate.replace([float('inf'), float('-inf')], pd.NA).dropna()
# Display the average growth rate as a big number
average_growth_rate = growth_rate.mean()
st.metric(label=f"{aggregation_level.capitalize()}ly Average Growth Rate", value=f"{average_growth_rate:.2f}%")
# Create the plot
plt.figure(figsize=(12, 6))
plt.plot(percentage_papers_with_artifacts.index, percentage_papers_with_artifacts, marker='o', linestyle='-', color='b', label='Percentage of Papers with on least 1 Artifact')
# Set the y-axis limits
plt.ylim(0, 100)
plt.xlabel(aggregation_level)
plt.ylabel('Percentage')
plt.title('Percentage of Papers with Artifacts (Models, Datasets, Spaces) Over Time')
plt.legend()
plt.grid(True)
# Use Streamlit to display the plot
st.pyplot(plt)
def show_data_editor(filtered_df: pd.DataFrame, key: str):
edited_df = st.data_editor(filtered_df,
hide_index=True,
column_order=("reached_out", "reached_out_link", "paper_page", "title", "github", "num_models", "num_datasets", "num_spaces"),
column_config={"github": st.column_config.LinkColumn(),
"paper_page": st.column_config.LinkColumn(),
"paper_page_with_title": st.column_config.LinkColumn(display_text=r'\|(.*)')},
width=2000,
key=key)
if edited_df is not None and not edited_df.equals(filtered_df):
# update the df of the session state with the affected rows
# TODO there seems to be a bug in here
original_df = st.session_state.df
original_df.update(edited_df)
st.session_state.df = original_df
def display_data(filtered_df: pd.DataFrame):
num_artifacts = filtered_df['has_artifact'].sum()
percentage_of_at_least_one_artifact = num_artifacts / filtered_df.shape[0] if filtered_df.shape[0] > 0 else 0
percentage_of_at_least_one_artifact = round(percentage_of_at_least_one_artifact * 100, 2)
st.markdown(f"""
## {percentage_of_at_least_one_artifact}% papers with at least one πŸ€— artifact
* Number of papers: {filtered_df.shape[0]}
* Number of papers with a Github link: {(filtered_df['github'].values != '').sum()}
* Number of papers with at least one HF artifact: {num_artifacts}
""")
st.write("Papers with at least one artifact")
show_data_editor(filtered_df=filtered_df[filtered_df['has_artifact']],
key="papers_with_artifacts")
st.write("Papers without artifacts")
show_data_editor(filtered_df=filtered_df[~filtered_df['has_artifact']],
key="papers_without_artifacts")
st.write("Papers with a HF mention in README but no artifacts")
show_data_editor(filtered_df=filtered_df[(filtered_df['hf_mention'] == 1) & (~filtered_df['has_artifact'])],
key="papers_with_hf_mention_no_artifacts")
def main():
st.title("Hugging Face Artifacts KPI Dashboard")
# 2 tabs: one for daily data, one for weekly data
st.sidebar.title("Navigation")
selection = st.sidebar.selectbox("Go to", ["Daily/weekly/monthly data", "Aggregated data"])
# Initialize session state
if 'df' not in st.session_state:
df = get_data()
# add has_artifact, reached out and reached out link columns
# TODO remove since this will overwrite everything if we have added data before
df['has_artifact'] = (df['num_models'] > 0) | (df['num_datasets'] > 0) | (df['num_spaces'] > 0)
df['reached_out'] = [False for _ in range(df.shape[0])]
df["reached_out_link"] = ["" for _ in range(df.shape[0])]
st.session_state.df = df
if selection == "Daily/weekly/monthly data":
# Button to select day, month or week
# Add streamlit selectbox.
view_level = st.selectbox(label="View data per day, week or month", options=["day", "week", "month"])
if view_level == "day":
# make a button to select the day, defaulting to today
day = st.date_input("Select day", value="today", format="DD/MM/YYYY")
# convert to the day of a Pandas Timestamp
day = pd.Timestamp(day)
# fetch df from sessions state
df = st.session_state.df
filtered_df = df[df.index.date == day.date()]
st.write(f"Showing data for {day.day_name()} {day.strftime('%d/%m/%Y')}")
display_data(filtered_df=filtered_df)
elif view_level == "week":
# make a button to select the week
week_number = st.number_input("Select week", value=datetime.today().isocalendar()[1], min_value=1, max_value=52)
# fetch df from sessions state
df = st.session_state.df
# Extract week number from the index
df['week'] = df.index.isocalendar().week
# Filter the dataframe for the desired week number
filtered_df = df[df['week'] == week_number]
st.write(f"Showing data for week {week_number}")
display_data(filtered_df=filtered_df)
elif view_level == "month":
# make a button to select the month, defaulting to current month
month_str = st.selectbox("Select month", options=["January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December"])
year_str = st.selectbox("Select year", options=["2024"])
# fetch df from sessions state
df = st.session_state.df
# Filter the dataframe for the desired week number
month_map = {
'January': 1, 'February': 2, 'March': 3, 'April': 4,
'May': 5, 'June': 6, 'July': 7, 'August': 8,
'September': 9, 'October': 10, 'November': 11, 'December': 12
}
# Convert month string to number
month = month_map[month_str]
year = int(year_str)
filtered_df = df[(df.index.month == month) & (df.index.year == year)]
st.write(f"Showing data for {month_str} {year_str}")
display_data(filtered_df=filtered_df)
elif selection == "Aggregated data":
# get the latest dataframe
df = get_data()
aggregated_data(df)
aggregated_data(df, aggregation_level="month")
else:
st.write("Error: selection not recognized")
if __name__ == "__main__":
main()