Spaces:
Sleeping
Sleeping
First draft
Browse files- .gitignore +1 -0
- app.py +75 -0
- load_dataframe.py +144 -0
- requirements.txt +5 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
env/
|
app.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import datetime
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
# from load_dataframe import get_data
|
7 |
+
|
8 |
+
|
9 |
+
# Main Streamlit app
|
10 |
+
def main():
|
11 |
+
st.title("Hugging Face Papers KPI Dashboard")
|
12 |
+
|
13 |
+
# TODO use this instead
|
14 |
+
# df = get_data()
|
15 |
+
df = pd.read_csv('/Users/nielsrogge/Downloads/daily_papers_enriched (1).csv')
|
16 |
+
df = df.drop(['Unnamed: 0'], axis=1)
|
17 |
+
# Use date as index
|
18 |
+
# Note that it's a string, not a datetime
|
19 |
+
df = df.set_index('date')
|
20 |
+
df.index = pd.to_datetime(df.index).strftime('%d-%m-%Y')
|
21 |
+
df = df.sort_index()
|
22 |
+
|
23 |
+
# Button to select day, month or week
|
24 |
+
# Add streamlit selectbox.
|
25 |
+
view_level = st.selectbox(label="View data per day, week or month", options=["day", "week", "month"])
|
26 |
+
|
27 |
+
if view_level == "day":
|
28 |
+
# make a button to select the day, defaulting to today
|
29 |
+
day = st.date_input("Select day", value="today", format="DD/MM/YYYY")
|
30 |
+
# convert to the day of a Pandas Timestamp
|
31 |
+
day = pd.Timestamp(day)
|
32 |
+
|
33 |
+
print("Day:", day)
|
34 |
+
|
35 |
+
df = df.loc[day.strftime('%d-%m-%Y'):day.strftime('%d-%m-%Y')]
|
36 |
+
|
37 |
+
st.write(f"Showing data for {day.strftime('%d/%m/%Y')}")
|
38 |
+
|
39 |
+
st.markdown(f"""
|
40 |
+
## Number of papers: {df.shape[0]}
|
41 |
+
#### Number of papers with a Github link: {df['github'].notnull().sum()}
|
42 |
+
#### Number of papers with at least one HF artifact: {df['num_models'].sum()}
|
43 |
+
""")
|
44 |
+
|
45 |
+
st.dataframe(df,
|
46 |
+
hide_index=True,
|
47 |
+
column_order=("paper_page", "title", "github", "num_models", "num_datasets", "num_spaces"),
|
48 |
+
column_config={"github": st.column_config.LinkColumn(),
|
49 |
+
"paper_page": st.column_config.LinkColumn()},
|
50 |
+
width=2000)
|
51 |
+
|
52 |
+
elif view_level == "week":
|
53 |
+
# make a button to select the week
|
54 |
+
week = st.sidebar.date_input("Select week", value=pd.Timestamp.today().isocalendar())
|
55 |
+
|
56 |
+
df = df.loc[df['date'].dt.isocalendar().week == week.isocalendar().week]
|
57 |
+
|
58 |
+
st.write(f"Showing data for {day}")
|
59 |
+
st.dataframe(df)
|
60 |
+
|
61 |
+
elif view_level == "month":
|
62 |
+
# make a button to select the month, defaulting to current month
|
63 |
+
month = st.sidebar.date_input("Select month", value=pd.Timestamp.today().month_name())
|
64 |
+
|
65 |
+
df = df.loc[df['date'].dt.month_name() == month]
|
66 |
+
|
67 |
+
st.write(f"Showing data for {day}")
|
68 |
+
st.dataframe(df)
|
69 |
+
|
70 |
+
# Display data based on aggregation level
|
71 |
+
|
72 |
+
|
73 |
+
|
74 |
+
if __name__ == "__main__":
|
75 |
+
main()
|
load_dataframe.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import dataclasses
|
2 |
+
from multiprocessing import cpu_count
|
3 |
+
import tqdm
|
4 |
+
import requests
|
5 |
+
import streamlit as st
|
6 |
+
|
7 |
+
import pandas as pd
|
8 |
+
from datasets import Dataset, load_dataset
|
9 |
+
from paperswithcode import PapersWithCodeClient
|
10 |
+
|
11 |
+
|
12 |
+
@dataclasses.dataclass(frozen=True)
|
13 |
+
class PaperInfo:
|
14 |
+
date: str
|
15 |
+
arxiv_id: str
|
16 |
+
github: str
|
17 |
+
title: str
|
18 |
+
paper_page: str
|
19 |
+
upvotes: int
|
20 |
+
num_comments: int
|
21 |
+
|
22 |
+
|
23 |
+
def get_df() -> pd.DataFrame:
|
24 |
+
df = pd.merge(
|
25 |
+
left=load_dataset("hysts-bot-data/daily-papers", split="train").to_pandas(),
|
26 |
+
right=load_dataset("hysts-bot-data/daily-papers-stats", split="train").to_pandas(),
|
27 |
+
on="arxiv_id",
|
28 |
+
)
|
29 |
+
df = df[::-1].reset_index(drop=True)
|
30 |
+
|
31 |
+
paper_info = []
|
32 |
+
for _, row in tqdm.auto.tqdm(df.iterrows(), total=len(df)):
|
33 |
+
info = PaperInfo(
|
34 |
+
**row,
|
35 |
+
paper_page=f"https://huggingface.co/papers/{row.arxiv_id}",
|
36 |
+
)
|
37 |
+
paper_info.append(info)
|
38 |
+
return pd.DataFrame([dataclasses.asdict(info) for info in paper_info])
|
39 |
+
|
40 |
+
|
41 |
+
def get_github_url(client: PapersWithCodeClient, paper_title: str) -> str:
|
42 |
+
"""
|
43 |
+
Get the Github URL for a paper.
|
44 |
+
"""
|
45 |
+
|
46 |
+
repo_url = ""
|
47 |
+
try:
|
48 |
+
# get paper ID
|
49 |
+
results = client.paper_list(q=paper_title).results
|
50 |
+
paper_id = results[0].id
|
51 |
+
|
52 |
+
# get paper
|
53 |
+
paper = client.paper_get(paper_id=paper_id)
|
54 |
+
|
55 |
+
# get repositories
|
56 |
+
repositories = client.paper_repository_list(paper_id=paper.id).results
|
57 |
+
|
58 |
+
for repo in repositories:
|
59 |
+
if repo.is_official:
|
60 |
+
repo_url = repo.url
|
61 |
+
|
62 |
+
except:
|
63 |
+
pass
|
64 |
+
|
65 |
+
return repo_url
|
66 |
+
|
67 |
+
|
68 |
+
def add_metadata_batch(batch, client: PapersWithCodeClient):
|
69 |
+
"""
|
70 |
+
Add metadata to a batch of papers.
|
71 |
+
"""
|
72 |
+
|
73 |
+
# get Github URLs for all papers in the batch
|
74 |
+
github_urls = []
|
75 |
+
for paper_title in batch["title"]:
|
76 |
+
github_url = get_github_url(client, paper_title)
|
77 |
+
github_urls.append(github_url)
|
78 |
+
|
79 |
+
# overwrite the Github links
|
80 |
+
batch["github"] = github_urls
|
81 |
+
|
82 |
+
return batch
|
83 |
+
|
84 |
+
|
85 |
+
def add_hf_assets(batch):
|
86 |
+
"""
|
87 |
+
Add Hugging Face assets to a batch of papers.
|
88 |
+
"""
|
89 |
+
num_spaces = []
|
90 |
+
num_models = []
|
91 |
+
num_datasets = []
|
92 |
+
for arxiv_id in batch["arxiv_id"]:
|
93 |
+
if arxiv_id != "":
|
94 |
+
response = requests.get(f"https://huggingface.co/api/arxiv/{arxiv_id}/repos")
|
95 |
+
result = response.json()
|
96 |
+
num_spaces_example = len(result["spaces"])
|
97 |
+
num_models_example = len(result["models"])
|
98 |
+
num_datasets_example = len(result["datasets"])
|
99 |
+
else:
|
100 |
+
num_spaces_example = 0
|
101 |
+
num_models_example = 0
|
102 |
+
num_datasets_example = 0
|
103 |
+
|
104 |
+
num_spaces.append(num_spaces_example)
|
105 |
+
num_models.append(num_models_example)
|
106 |
+
num_datasets.append(num_datasets_example)
|
107 |
+
|
108 |
+
batch["num_models"] = num_models
|
109 |
+
batch["num_datasets"] = num_datasets
|
110 |
+
batch["num_spaces"] = num_spaces
|
111 |
+
|
112 |
+
return batch
|
113 |
+
|
114 |
+
|
115 |
+
@st.cache_data
|
116 |
+
def get_data() -> pd.DataFrame:
|
117 |
+
"""
|
118 |
+
Load the dataset and enrich it with metadata.
|
119 |
+
"""
|
120 |
+
# step 1. load as Pandas dataframe
|
121 |
+
df = get_df()
|
122 |
+
df['date'] = pd.to_datetime(df['date'])
|
123 |
+
|
124 |
+
# step 2. enrich using PapersWithCode API
|
125 |
+
dataset = Dataset.from_pandas(df)
|
126 |
+
|
127 |
+
# TODO remove
|
128 |
+
# dataset = dataset.select(range(10))
|
129 |
+
|
130 |
+
dataset = dataset.map(add_metadata_batch, batched=True, batch_size=4, num_proc=cpu_count(), fn_kwargs={"client": PapersWithCodeClient()})
|
131 |
+
|
132 |
+
# step 3. enrich using Hugging Face API
|
133 |
+
dataset = dataset.map(add_hf_assets, batched=True, batch_size=4, num_proc=cpu_count())
|
134 |
+
|
135 |
+
# return as Pandas dataframe
|
136 |
+
dataframe = dataset.to_pandas()
|
137 |
+
|
138 |
+
# convert date column to datetime
|
139 |
+
dataframe['date'] = pd.to_datetime(dataframe['date'])
|
140 |
+
|
141 |
+
print("First few rows of the dataset:")
|
142 |
+
print(dataframe.head())
|
143 |
+
|
144 |
+
return dataframe
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
plotly
|
3 |
+
tqdm
|
4 |
+
datasets
|
5 |
+
paperswithcode
|