import dataclasses from multiprocessing import cpu_count import tqdm import requests import streamlit as st import pandas as pd from datasets import Dataset, load_dataset from paperswithcode import PapersWithCodeClient @dataclasses.dataclass(frozen=True) class PaperInfo: date: str arxiv_id: str github: str title: str paper_page: str upvotes: int num_comments: int def get_df(start_date: str, end_date: str) -> pd.DataFrame: """ Load the initial dataset as a Pandas dataframe. """ df = pd.merge( left=load_dataset("hysts-bot-data/daily-papers", split="train").to_pandas(), right=load_dataset("hysts-bot-data/daily-papers-stats", split="train").to_pandas(), on="arxiv_id", ) df = df[::-1].reset_index(drop=True) paper_info = [] for _, row in tqdm.auto.tqdm(df.iterrows(), total=len(df)): info = PaperInfo( **row, paper_page=f"https://huggingface.co/papers/{row.arxiv_id}", ) paper_info.append(info) df = pd.DataFrame([dataclasses.asdict(info) for info in paper_info]) # set date as index df = df.set_index('date') df.index = pd.to_datetime(df.index) # only include data between start_date and end_date df = df[(df.index >= start_date) & (df.index <= end_date)] return df def get_github_url(client: PapersWithCodeClient, paper_title: str) -> str: """ Get the Github URL for a paper. """ repo_url = "" try: # get paper ID results = client.paper_list(q=paper_title).results paper_id = results[0].id # get paper paper = client.paper_get(paper_id=paper_id) # get repositories repositories = client.paper_repository_list(paper_id=paper.id).results for repo in repositories: if repo.is_official: repo_url = repo.url except: pass return repo_url def add_metadata_batch(batch, client: PapersWithCodeClient): """ Add metadata to a batch of papers. """ # get Github URLs for all papers in the batch github_urls = [] for paper_title in batch["title"]: github_url = get_github_url(client, paper_title) github_urls.append(github_url) # overwrite the Github links batch["github"] = github_urls return batch def add_hf_assets(batch): """ Add Hugging Face assets to a batch of papers. """ num_spaces = [] num_models = [] num_datasets = [] for arxiv_id in batch["arxiv_id"]: if arxiv_id != "": response = requests.get(f"https://huggingface.co/api/arxiv/{arxiv_id}/repos") result = response.json() num_spaces_example = len(result["spaces"]) num_models_example = len(result["models"]) num_datasets_example = len(result["datasets"]) else: num_spaces_example = 0 num_models_example = 0 num_datasets_example = 0 num_spaces.append(num_spaces_example) num_models.append(num_models_example) num_datasets.append(num_datasets_example) batch["num_models"] = num_models batch["num_datasets"] = num_datasets batch["num_spaces"] = num_spaces return batch def check_hf_mention(batch): """ Check if a paper mentions Hugging Face in the README. """ hf_mentions = [] for github_url in batch["github"]: hf_mention = 0 if github_url != "": # get README text using Github API owner = github_url.split("/")[-2] repo = github_url.split("/")[-1] branch = "main" url = f"https://raw.githubusercontent.com/{owner}/{repo}/{branch}/README.md" response = requests.get(url) if response.status_code != 200: # try master branch as second attempt branch = "master" url = f"https://raw.githubusercontent.com/{owner}/{repo}/{branch}/README.md" response = requests.get(url) if response.status_code == 200: # get text text = response.text if "huggingface" in text.lower() or "hugging face" in text.lower(): hf_mention = 1 hf_mentions.append(hf_mention) # overwrite the Github links batch["hf_mention"] = hf_mentions return batch def process_data(start_date: str, end_date: str) -> pd.DataFrame: """ Load the dataset and enrich it with metadata. """ # step 1. load as HF dataset df = get_df(start_date, end_date) dataset = Dataset.from_pandas(df) # step 2. enrich using PapersWithCode API dataset = dataset.map(add_metadata_batch, batched=True, batch_size=4, num_proc=cpu_count(), fn_kwargs={"client": PapersWithCodeClient()}) # step 3. enrich using Hugging Face API dataset = dataset.map(add_hf_assets, batched=True, batch_size=4, num_proc=cpu_count()) # step 4. check if Hugging Face is mentioned in the README dataset = dataset.map(check_hf_mention, batched=True, batch_size=4, num_proc=cpu_count()) # return as Pandas dataframe dataframe = dataset.to_pandas() # convert date column to datetime dataframe['date'] = pd.to_datetime(dataframe['date']) print("First few rows of the dataset:") print(dataframe.head()) return dataframe @st.cache_data def get_data() -> pd.DataFrame: # step 1: load pre-processed data df = load_dataset("nielsr/daily-papers-enriched", split="train").to_pandas() df = df.set_index('date') df = df.sort_index() df.index = pd.to_datetime(df.index) # step 2: check how much extra data we need to process latest_day = df.iloc[-1].name.strftime('%d-%m-%Y') today = pd.Timestamp.today().strftime('%d-%m-%Y') # step 3: process the missing data if latest_day < today: print(f"Processing data from {latest_day} to {today}") new_df = process_data(start_date=latest_day, end_date=today) new_df = new_df[new_df.index > latest_day] df = pd.concat([df, new_df]) return df