Parallelize client calls
Browse files
app.py
CHANGED
@@ -5,6 +5,7 @@ import os
|
|
5 |
import gradio as gr
|
6 |
import torch
|
7 |
from gradio_client import Client
|
|
|
8 |
|
9 |
DESCRIPTION = "# Comparing image captioning models"
|
10 |
ORIGINAL_SPACE_INFO = """\
|
@@ -25,28 +26,31 @@ torch.hub.download_url_to_file(
|
|
25 |
)
|
26 |
|
27 |
|
28 |
-
def generate_caption_git(image_path: str) -> str:
|
29 |
try:
|
30 |
client = Client("library-samples/image-captioning-with-git")
|
31 |
-
|
|
|
32 |
except Exception:
|
33 |
gr.Warning("The GIT-large Space is currently unavailable. Please try again later.")
|
34 |
return ""
|
35 |
|
36 |
|
37 |
-
def generate_caption_blip(image_path: str) -> str:
|
38 |
try:
|
39 |
client = Client("library-samples/image-captioning-with-blip")
|
40 |
-
|
|
|
41 |
except Exception:
|
42 |
gr.Warning("The BLIP-large Space is currently unavailable. Please try again later.")
|
43 |
return ""
|
44 |
|
45 |
|
46 |
-
def generate_caption_blip2_opt(image_path: str) -> str:
|
47 |
try:
|
48 |
client = Client("merve/BLIP2-with-transformers")
|
49 |
-
|
|
|
50 |
image_path,
|
51 |
"Beam search",
|
52 |
1, # temperature
|
@@ -59,10 +63,11 @@ def generate_caption_blip2_opt(image_path: str) -> str:
|
|
59 |
return ""
|
60 |
|
61 |
|
62 |
-
def generate_caption_blip2_t5xxl(image_path: str) -> str:
|
63 |
try:
|
64 |
client = Client("hysts/BLIP2-with-transformers")
|
65 |
-
|
|
|
66 |
image_path,
|
67 |
"Beam search",
|
68 |
1, # temperature
|
@@ -79,10 +84,11 @@ def generate_caption_blip2_t5xxl(image_path: str) -> str:
|
|
79 |
return ""
|
80 |
|
81 |
|
82 |
-
def generate_caption_instructblip(image_path: str) -> str:
|
83 |
try:
|
84 |
client = Client("library-samples/InstructBLIP")
|
85 |
-
|
|
|
86 |
image_path,
|
87 |
"Describe the image.",
|
88 |
"Beam search",
|
@@ -100,24 +106,26 @@ def generate_caption_instructblip(image_path: str) -> str:
|
|
100 |
return ""
|
101 |
|
102 |
|
103 |
-
def generate_caption_fuyu(image_path: str) -> str:
|
104 |
try:
|
105 |
client = Client("adept/fuyu-8b-demo")
|
106 |
-
|
|
|
107 |
except Exception:
|
108 |
gr.Warning("The Fuyu-8B Space is currently unavailable. Please try again later.")
|
109 |
return ""
|
110 |
|
111 |
|
112 |
def generate_captions(image_path: str) -> tuple[str, str, str, str, str, str]:
|
113 |
-
|
114 |
-
generate_caption_git(image_path),
|
115 |
-
generate_caption_blip(image_path),
|
116 |
-
generate_caption_blip2_opt(image_path),
|
117 |
-
generate_caption_blip2_t5xxl(image_path),
|
118 |
-
generate_caption_instructblip(image_path),
|
119 |
-
generate_caption_fuyu(image_path),
|
120 |
-
|
|
|
121 |
|
122 |
|
123 |
with gr.Blocks(css="style.css") as demo:
|
|
|
5 |
import gradio as gr
|
6 |
import torch
|
7 |
from gradio_client import Client
|
8 |
+
from gradio_client.client import Job
|
9 |
|
10 |
DESCRIPTION = "# Comparing image captioning models"
|
11 |
ORIGINAL_SPACE_INFO = """\
|
|
|
26 |
)
|
27 |
|
28 |
|
29 |
+
def generate_caption_git(image_path: str, return_job: bool = False) -> str | Job:
|
30 |
try:
|
31 |
client = Client("library-samples/image-captioning-with-git")
|
32 |
+
fn = client.submit if return_job else client.predict
|
33 |
+
return fn(image_path, api_name="/caption")
|
34 |
except Exception:
|
35 |
gr.Warning("The GIT-large Space is currently unavailable. Please try again later.")
|
36 |
return ""
|
37 |
|
38 |
|
39 |
+
def generate_caption_blip(image_path: str, return_job: bool = False) -> str | Job:
|
40 |
try:
|
41 |
client = Client("library-samples/image-captioning-with-blip")
|
42 |
+
fn = client.submit if return_job else client.predict
|
43 |
+
return fn(image_path, "A picture of", api_name="/caption")
|
44 |
except Exception:
|
45 |
gr.Warning("The BLIP-large Space is currently unavailable. Please try again later.")
|
46 |
return ""
|
47 |
|
48 |
|
49 |
+
def generate_caption_blip2_opt(image_path: str, return_job: bool = False) -> str | Job:
|
50 |
try:
|
51 |
client = Client("merve/BLIP2-with-transformers")
|
52 |
+
fn = client.submit if return_job else client.predict
|
53 |
+
return fn(
|
54 |
image_path,
|
55 |
"Beam search",
|
56 |
1, # temperature
|
|
|
63 |
return ""
|
64 |
|
65 |
|
66 |
+
def generate_caption_blip2_t5xxl(image_path: str, return_job: bool = False) -> str | Job:
|
67 |
try:
|
68 |
client = Client("hysts/BLIP2-with-transformers")
|
69 |
+
fn = client.submit if return_job else client.predict
|
70 |
+
return fn(
|
71 |
image_path,
|
72 |
"Beam search",
|
73 |
1, # temperature
|
|
|
84 |
return ""
|
85 |
|
86 |
|
87 |
+
def generate_caption_instructblip(image_path: str, return_job: bool = False) -> str | Job:
|
88 |
try:
|
89 |
client = Client("library-samples/InstructBLIP")
|
90 |
+
fn = client.submit if return_job else client.predict
|
91 |
+
return fn(
|
92 |
image_path,
|
93 |
"Describe the image.",
|
94 |
"Beam search",
|
|
|
106 |
return ""
|
107 |
|
108 |
|
109 |
+
def generate_caption_fuyu(image_path: str, return_job: bool = False) -> str | Job:
|
110 |
try:
|
111 |
client = Client("adept/fuyu-8b-demo")
|
112 |
+
fn = client.submit if return_job else client.predict
|
113 |
+
return fn(image_path, "Generate a coco style caption.", fn_index=3)
|
114 |
except Exception:
|
115 |
gr.Warning("The Fuyu-8B Space is currently unavailable. Please try again later.")
|
116 |
return ""
|
117 |
|
118 |
|
119 |
def generate_captions(image_path: str) -> tuple[str, str, str, str, str, str]:
|
120 |
+
jobs = [
|
121 |
+
generate_caption_git(image_path, return_job=True),
|
122 |
+
generate_caption_blip(image_path, return_job=True),
|
123 |
+
generate_caption_blip2_opt(image_path, return_job=True),
|
124 |
+
generate_caption_blip2_t5xxl(image_path, return_job=True),
|
125 |
+
generate_caption_instructblip(image_path, return_job=True),
|
126 |
+
generate_caption_fuyu(image_path, return_job=True),
|
127 |
+
]
|
128 |
+
return tuple(job.result() if job else "" for job in jobs)
|
129 |
|
130 |
|
131 |
with gr.Blocks(css="style.css") as demo:
|