File size: 3,013 Bytes
9c93bcf
cca303a
690f166
 
 
 
c3ee9a5
 
b768f7e
690f166
 
b47dc23
 
b768f7e
c3ee9a5
 
 
 
 
7777d8a
 
c3ee9a5
 
 
 
b06234a
c3ee9a5
 
b972826
c3ee9a5
 
b47dc23
c3ee9a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b39aaad
d694199
5b6b34d
8703dc5
c3ee9a5
 
a393dd3
 
c3ee9a5
 
 
b39aaad
798398e
c3ee9a5
8b94057
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import os
os.system('pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.9/index.html')
os.system("git clone https://github.com/microsoft/unilm.git")

import sys
sys.path.append("unilm")

import cv2

from unilm.dit.object_detection.ditod import add_vit_config

import torch

from detectron2.config import CfgNode as CN
from detectron2.config import get_cfg
from detectron2.utils.visualizer import ColorMode, Visualizer
from detectron2.data import MetadataCatalog
from detectron2.engine import DefaultPredictor

import gradio as gr


# Step 1: instantiate config
cfg = get_cfg()
add_vit_config(cfg)
cfg.merge_from_file("cascade_dit_base.yml")

# Step 2: add model weights URL to config
cfg.MODEL.WEIGHTS = "https://layoutlm.blob.core.windows.net/dit/dit-fts/publaynet_dit-b_cascade.pth"

# Step 3: set device
cfg.MODEL.DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

# Step 4: define model
predictor = DefaultPredictor(cfg)


def analyze_image(img):
    md = MetadataCatalog.get(cfg.DATASETS.TEST[0])
    if cfg.DATASETS.TEST[0]=='icdar2019_test':
        md.set(thing_classes=["table"])
    else:
        md.set(thing_classes=["text","title","list","table","figure"])
    
    output = predictor(img)["instances"]
    v = Visualizer(img[:, :, ::-1],
                    md,
                    scale=1.0,
                    instance_mode=ColorMode.SEGMENTATION)
    result = v.draw_instance_predictions(output.to("cpu"))
    result_image = result.get_image()[:, :, ::-1]
    
    return result_image
    
title = "Interactive demo: Document Layout Analysis with DiT"
description = "Demo for Microsoft's DiT, the Document Image Transformer for state-of-the-art document understanding tasks. This particular model is fine-tuned on PubLayNet, a large dataset for document layout analysis (read more at the links below). To use it, simply upload an image or use the example image below and click 'Submit'. Results will show up in a few seconds. If you want to make the output bigger, right-click on it and select 'Open image in new tab'."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2203.02378' target='_blank'>Paper</a> | <a href='https://github.com/microsoft/unilm/tree/master/dit' target='_blank'>Github Repo</a></p> | <a href='https://huggingface.co/docs/transformers/master/en/model_doc/dit' target='_blank'>HuggingFace doc</a></p>"
examples =[['publaynet_example.jpeg']]
css = ".output-image, .input-image, .image-preview {height: 600px !important}"

iface = gr.Interface(fn=analyze_image, 
                     inputs=gr.inputs.Image(type="numpy", label="document image"), 
                     outputs=gr.outputs.Image(type="numpy", label="annotated document"),
                     title=title,
                     description=description,
                     examples=examples,
                     article=article,
                     css=css,
                     enable_queue=True)
iface.launch(debug=True, cache_examples=True)