nielsr HF staff commited on
Commit
23f0a7f
·
1 Parent(s): ad081f2

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +47 -0
app.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from PIL import Image
2
+ import requests
3
+
4
+ from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
5
+ from diffusers import DiffusionPipeline
6
+ from torch import autocast
7
+
8
+ url = "https://github.com/timojl/clipseg/blob/master/example_image.jpg?raw=true"
9
+ image = Image.open(requests.get(url, stream=True).raw)
10
+ image
11
+
12
+ processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
13
+ model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
14
+
15
+ pipe = DiffusionPipeline.from_pretrained(
16
+ "runwayml/stable-diffusion-inpainting",
17
+ custom_pipeline="text_inpainting",
18
+ segmentation_model=model,
19
+ segmentation_processor=processor
20
+ )
21
+
22
+ device = "cuda" if torch.cuda.is_available() else "cpu"
23
+ pipe = pipe.to(device)
24
+
25
+
26
+ def process_image(image, text, prompt):
27
+ image = image.resize((512, 512))
28
+ with autocast("cuda"):
29
+ inpainted_image = pipe(image=image, text=text, prompt=prompt).images[0]
30
+ return inpainted_image
31
+
32
+
33
+ title = "Interactive demo: Text-based inpainting with CLIPSeg x Stable Diffusion"
34
+ description = "Demo for using CLIPSeg, a CLIP-based model for zero- and one-shot image segmentation. This model can be used to segment things in an image based on text. This way, one can use it to provide a binary mask for Stable Diffusion, which the latter needs to inpaint. To use it, simply upload an image and add a text to mask as well as a text which indicates what to replace, or use one of the examples below and click 'submit'. Results will show up in a few seconds."
35
+ article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2112.10003'>CLIPSeg: Image Segmentation Using Text and Image Prompts</a> | <a href='https://huggingface.co/docs/transformers/main/en/model_doc/clipseg'>HuggingFace docs</a></p>"
36
+
37
+ examples = [["example_image.png", "a glass", "a cup"]]
38
+
39
+ interface = gr.Interface(fn=process_image,
40
+ inputs=[gr.Image(type="pil"), gr.Textbox(label="text"), gr.Textbox(label="prompt")],
41
+ outputs=gr.Image(type="pil"),
42
+ title=title,
43
+ description=description,
44
+ article=article,
45
+ examples=examples)
46
+
47
+ interface.launch(debug=True)