import gradio as gr import torch from diffusers import StableDiffusionPipeline from datasets import load_dataset from PIL import Image import re import datetime model_id = "CompVis/stable-diffusion-v1-4" device = "cuda" # If you are running this code locally, you need to either do a 'huggingface-cli login` or paste your User Access Token from here https://huggingface.co/settings/tokens into the use_auth_token field below. pipe = StableDiffusionPipeline.from_pretrained( model_id, use_auth_token=True, revision="fp16", torch_dtype=torch.float16 ) pipe = pipe.to(device) # When running locally, you won`t have access to this, so you can remove this part word_list_dataset = load_dataset( "stabilityai/word-list", data_files="list.txt", use_auth_token=True ) word_list = word_list_dataset["train"]["text"] def infer(prompt, samples, steps, scale, seed): # When running locally you can also remove this filter for filter in word_list: if re.search(rf"\b{filter}\b", prompt): raise gr.Error( "Unsafe content found. Please try again with different prompts." ) generator = torch.Generator(device=device).manual_seed(seed) # If you are running locally with CPU, you can remove the `with autocast("cuda")` start = datetime.datetime.now() images_list = pipe( [prompt] * samples, num_inference_steps=steps, guidance_scale=scale, generator=generator, ) print(f"Ran in {datetime.datetime.now() - start}") images = [] safe_image = Image.open(r"unsafe.png") for i, image in enumerate(images_list["sample"]): if images_list["nsfw_content_detected"][i]: images.append(safe_image) else: images.append(image) return images css = """ .gradio-container { font-family: 'IBM Plex Sans', sans-serif; } .gr-button { color: white; border-color: black; background: black; } input[type='range'] { accent-color: black; } .dark input[type='range'] { accent-color: #dfdfdf; } .container { max-width: 730px; margin: auto; padding-top: 1.5rem; } #gallery { min-height: 22rem; margin-bottom: 15px; margin-left: auto; margin-right: auto; border-bottom-right-radius: .5rem !important; border-bottom-left-radius: .5rem !important; } #gallery>div>.h-full { min-height: 20rem; } .details:hover { text-decoration: underline; } .gr-button { white-space: nowrap; } .gr-button:focus { border-color: rgb(147 197 253 / var(--tw-border-opacity)); outline: none; box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000); --tw-border-opacity: 1; --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color); --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color); --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity)); --tw-ring-opacity: .5; } #advanced-btn { font-size: .7rem !important; line-height: 19px; margin-top: 12px; margin-bottom: 12px; padding: 2px 8px; border-radius: 14px !important; } #advanced-options { display: none; margin-bottom: 20px; } .footer { margin-bottom: 45px; margin-top: 35px; text-align: center; border-bottom: 1px solid #e5e5e5; } .footer>p { font-size: .8rem; display: inline-block; padding: 0 10px; transform: translateY(10px); background: white; } .dark .footer { border-color: #303030; } .dark .footer>p { background: #0b0f19; } .acknowledgments h4{ margin: 1.25em 0 .25em 0; font-weight: bold; font-size: 115%; } """ block = gr.Blocks(css=css) examples = [ [ "A high tech solarpunk utopia in the Amazon rainforest", 4, 45, 7.5, 1024, ], [ "A pikachu fine dining with a view to the Eiffel Tower", 4, 45, 7, 1024, ], [ "A mecha robot in a favela in expressionist style", 4, 45, 7, 1024, ], [ "an insect robot preparing a delicious meal", 4, 45, 7, 1024, ], [ "A small cabin on top of a snowy mountain in the style of Disney, artstation", 4, 45, 7, 1024, ], ] with block: gr.HTML( """
Stable Diffusion is a state of the art text-to-image model that generates
images from text.
For faster generation and forthcoming API
access you can try
DreamStudio Beta