Spaces:
Running
Running
import streamlit as st | |
from PIL import Image | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from cal import load_model, predict_image, calculate_calories | |
# Load the model | |
model = load_model() | |
# Set up the sidebar | |
st.sidebar.title("FoodVision") | |
st.sidebar.write("Upload an image or use your camera to take a picture.") | |
option = st.sidebar.selectbox( | |
'How would you like to provide the image?', | |
('Upload an image', 'Use camera') | |
) | |
image_path = None | |
if option == 'Upload an image': | |
uploaded_file = st.sidebar.file_uploader("Choose an image...", type=["jpg", "jpeg", "png", "webp"]) | |
if uploaded_file is not None: | |
image = Image.open(uploaded_file) | |
if image.mode == 'RGBA': | |
image = image.convert('RGB') | |
image_path = "uploaded_image.jpg" | |
image.save(image_path) | |
elif option == 'Use camera': | |
camera_image = st.sidebar.camera_input("Take a picture") | |
if camera_image is not None: | |
image = Image.open(camera_image) | |
if image.mode == 'RGBA': | |
image = image.convert('RGB') | |
image_path = "camera_image.jpg" | |
image.save(image_path) | |
if image_path: | |
# Display the image and classification results in columns | |
col1, col2 = st.columns(2) | |
with col1: | |
st.image(image, caption='Captured Image.', use_container_width=True) | |
st.write("") | |
st.write("Classifying...") | |
# Predict the image | |
image_with_boxes, detection_details = predict_image(image_path, model) | |
with col2: | |
# Display the image with bounding boxes and labels | |
st.image(image_with_boxes, caption='Processed Image.', use_container_width=True) | |
# Calculate and display detected items and their calories | |
detected_items = calculate_calories(detection_details) | |
st.markdown("<h3>Detection Results:</h3>", unsafe_allow_html=True) | |
for item, calories, confidence in detected_items: | |
st.markdown(f"<p style='font-size:18px;'>✓ Detected {item} ({calories} cal/100g) - Confidence: {confidence:.2%}</p>", unsafe_allow_html=True) | |
# Footer | |
st.markdown(""" | |
<style> | |
.footer { | |
position: fixed; | |
left: 0; | |
bottom: 0; | |
width: 100%; | |
background-color: #f1f1f1; | |
color: black; | |
text-align: center; | |
padding: 10px; | |
} | |
</style> | |
<div class="footer"> | |
<p>Food Vision © 2025</p> | |
</div> | |
""", unsafe_allow_html=True) |