Spaces:
Running
Running
# cal.py | |
import torch | |
from ultralytics import YOLO | |
import cv2 | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import streamlit as st | |
# Configuration class | |
class Config: | |
CLASSES = ['asparagus', 'avocados', 'broccoli', 'cabbage', #4 | |
'celery', 'cucumber', 'green_apples', 'green_beans', #4 | |
'green_capsicum', 'green_grapes', 'kiwifruit', #3 | |
'lettuce', 'limes', 'peas', 'spinach', #4 | |
'Banana', 'Cauliflower', 'Date', 'Garlic', #4 | |
'Ginger', 'Mushroom', 'Onion', 'Parsnip', #4 | |
'Peach', 'Pear', 'Potato', 'Turnip', #4 | |
'Beetroot', 'Blackberry', 'Blueberry', 'Cherry', #4 | |
'Eggplant', 'Plum', 'Purple asparagus', 'Purple grapes', #4 | |
'Radish', 'Raspberry', 'Red Apple', 'Red Grape', #4 | |
'Red cabbage', 'Red capsicum', 'Strawberry', 'Tomato', #4 | |
'Watermelon', 'apricot', 'carrot', 'corn', #4 | |
'grapefruit', 'lemon', 'mango', 'nectarine', #4 | |
'orange', 'pineapple', 'pumpkin', 'sweet_potato'] #4 | |
CALORIES_DICT = { | |
# Green foods (existing) | |
'asparagus': 20, | |
'avocados': 160, | |
'broccoli': 55, | |
'cabbage': 25, | |
'celery': 16, | |
'cucumber': 16, | |
'green_apples': 52, | |
'green_beans': 31, | |
'green_capsicum': 20, | |
'green_grapes': 69, | |
'kiwifruit': 61, | |
'lettuce': 15, | |
'limes': 30, | |
'peas': 81, | |
'spinach': 23, | |
# White/Beige foods | |
'Banana': 89, | |
'Cauliflower': 25, | |
'Date': 282, | |
'Garlic': 149, | |
'Ginger': 80, | |
'Mushroom': 22, | |
'Onion': 40, | |
'Parsnip': 75, | |
'Peach': 39, | |
'Pear': 57, | |
'Potato': 77, | |
'Turnip': 28, | |
# Purple/Red foods | |
'Beetroot': 43, | |
'Blackberry': 43, | |
'Blueberry': 57, | |
'Cherry': 50, | |
'Eggplant': 25, | |
'Plum': 46, | |
'Purple asparagus': 20, | |
'Purple grapes': 69, | |
'Radish': 16, | |
'Raspberry': 52, | |
'Red Apple': 52, | |
'Red Grape': 69, | |
'Red cabbage': 31, | |
'Red capsicum': 31, | |
'Strawberry': 32, | |
'Tomato': 18, | |
'Watermelon': 30, | |
# Orange/Yellow foods | |
'apricot': 48, | |
'carrot': 41, | |
'corn': 86, | |
'grapefruit': 42, | |
'lemon': 29, | |
'mango': 60, | |
'nectarine': 44, | |
'orange': 47, | |
'pineapple': 50, | |
'pumpkin': 26, | |
'sweet_potato': 86 | |
} | |
# Load the model | |
def load_model(): | |
model = YOLO('./best.pt') | |
return model | |
# Function to make predictions on a single image | |
def predict_image(image_path, model, conf_threshold=0.03): | |
# Perform inference on the image | |
results = model.predict( | |
source=image_path, | |
imgsz=640, | |
conf=conf_threshold | |
) | |
# Load the image for visualization | |
image = cv2.imread(image_path) | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
# To store detailed information about detections | |
detection_details = [] | |
# Iterate over detections | |
for result in results[0].boxes.data: | |
# Extract bounding box coordinates, confidence score, and class ID | |
x1, y1, x2, y2, confidence, class_id = result.cpu().numpy() | |
# Draw the bounding box with top confidence score | |
cv2.rectangle(image, (int(x1), int(y1)), (int(x2), int(y2)), color=(0, 255, 0), thickness=2) | |
label = f"{Config.CLASSES[int(class_id)]}: {confidence:.2f}" | |
cv2.putText(image, label, (int(x1), int(y1) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), thickness=1) | |
# Save details for printing below | |
detection_details.append({ | |
"class": Config.CLASSES[int(class_id)], | |
"top_confidence": confidence, | |
"bbox": (x1, y1, x2, y2) | |
}) | |
return image, detection_details | |
# Function to calculate detected items and their calories | |
def calculate_calories(detection_details): | |
""" | |
Calculate calories for detected items, keeping only the highest confidence detection for each unique food item. | |
Args: | |
detection_details: List of dictionaries containing detection information | |
Each dict has keys: "class" (food name), "top_confidence" (detection confidence), "bbox" | |
Returns: | |
List of tuples: (food_item, calories, confidence) for unique items with highest confidence | |
""" | |
# Dictionary to keep track of highest confidence detection for each food item | |
unique_items = {} | |
# Process each detection | |
for det in detection_details: | |
item = det["class"] | |
confidence = det["top_confidence"] | |
# Only update if this is the first instance or has higher confidence | |
if item not in unique_items or confidence > unique_items[item]["confidence"]: | |
unique_items[item] = { | |
"calories": Config.CALORIES_DICT[item], | |
"confidence": confidence | |
} | |
# Convert to list of tuples format | |
detected_items = [ | |
(item, data["calories"], data["confidence"]) | |
for item, data in unique_items.items() | |
] | |
# Sort by confidence (optional) | |
detected_items.sort(key=lambda x: x[2], reverse=True) | |
return detected_items |