nightey3s commited on
Commit
1887ee7
Β·
verified Β·
1 Parent(s): 0742190

Upload 5 files

Browse files
Files changed (3) hide show
  1. Model.ipynb +0 -0
  2. README.md +86 -13
  3. app.py +1 -1
Model.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
README.md CHANGED
@@ -1,13 +1,86 @@
1
- ---
2
- title: Green Food
3
- emoji: πŸ“ˆ
4
- colorFrom: purple
5
- colorTo: pink
6
- sdk: streamlit
7
- sdk_version: 1.40.2
8
- app_file: app.py
9
- pinned: false
10
- short_description: sch proj
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # FoodVision: Automated Food Detection Using YOLOv8
2
+
3
+ ## Project Overview
4
+ FoodVision is a deep learning-based food detection system that utilizes YOLOv8 to identify and classify various food items in images. The system is capable of detecting 55 different food classes with a focus on fruits and vegetables, making it useful for dietary monitoring and nutritional analysis.
5
+
6
+ ## Features
7
+ - Real-time food detection using YOLOv8
8
+ - Support for 55 different food classes
9
+ - Calorie estimation per 100g of detected food items
10
+ - Web interface using Streamlit
11
+ - Support for both image upload and camera capture
12
+ - Bounding box visualization with confidence scores
13
+
14
+ ## Model Architecture
15
+ - Base model: YOLOv8n (nano version)
16
+ - Input size: 640x640 pixels
17
+ - Batch size: 32
18
+ - Learning rate: 3e-4
19
+ - Training epochs: 45
20
+
21
+ ## Performance Metrics
22
+ - mAP50: ~0.8 (80% accuracy at 50% IoU)
23
+ - Precision: ~0.8
24
+ - Recall: ~0.75
25
+
26
+ ## Installation
27
+
28
+ 1. Clone the repository:
29
+ ```bash
30
+ git clone [email protected]:2302660/aai3001_final_project.git
31
+ cd aai3001_final_project
32
+ ```
33
+
34
+ 2. Install the required dependencies:
35
+ ```bash
36
+ pip install -r requirements.txt
37
+ ```
38
+
39
+ ## Usage
40
+
41
+ 1. Run the Streamlit application:
42
+ ```bash
43
+ streamlit run Sapp.py
44
+ ```
45
+
46
+ 2. Use the web interface to:
47
+ - Upload images or capture them using your camera
48
+ - View detected food items with bounding boxes
49
+ - See confidence scores and calorie information
50
+
51
+ ## Project Structure
52
+ ```
53
+ .
54
+ β”œβ”€β”€ Model.ipynb # Notebook for model training and evaluation
55
+ β”œβ”€β”€ cal.py # Core calorie calculation and detection functions
56
+ β”œβ”€β”€ Sapp.py # Streamlit web application
57
+ β”œβ”€β”€ best.pt # Trained model weights (not included in repo)
58
+ └── README.md # Project documentation
59
+ ```
60
+
61
+ ## Supported Food Classes
62
+ The model can detect 55 different food items including:
63
+ - Green foods: asparagus, avocados, broccoli, cabbage, etc.
64
+ - White/Beige foods: banana, cauliflower, garlic, mushroom, etc.
65
+ - Purple/Red foods: beetroot, blackberry, cherry, eggplant, etc.
66
+ - Orange/Yellow foods: apricot, carrot, corn, mango, etc.
67
+
68
+ ## Live Demo
69
+ You can try out the live demo at:
70
+ - [Hugging Face Space](https://nightey3s-aai3001-final-project.hf.space/)
71
+ - [Project Files](https://huggingface.co/spaces/nightey3s/aai3001_final_project/tree/main)
72
+
73
+ ## Team Members
74
+ - Brian Tham
75
+ - Hong Ziyang
76
+ - Javier Si Zhao Hong
77
+ - Timothy Zoe Delaya
78
+
79
+ ## Course Information
80
+ AAI3001 Deep Learning and Computer Vision, Trimester 1, 2024
81
+ Singapore Institute of Technology
82
+
83
+ ## Future Work
84
+ - Expand the dataset to include more food categories.
85
+ - Implement portion size estimation.
86
+ - Compare uploaded food images with dietary recommendations.
app.py CHANGED
@@ -8,7 +8,7 @@ from cal import load_model, predict_image, calculate_calories
8
  model = load_model()
9
 
10
  # Set up the sidebar
11
- st.sidebar.title("Food Calorie Detector")
12
  st.sidebar.write("Upload an image or use your camera to take a picture.")
13
 
14
  option = st.sidebar.selectbox(
 
8
  model = load_model()
9
 
10
  # Set up the sidebar
11
+ st.sidebar.title("FoodVision")
12
  st.sidebar.write("Upload an image or use your camera to take a picture.")
13
 
14
  option = st.sidebar.selectbox(