Spaces:
Running
Running
Create cal.py
Browse files
cal.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# cal.py
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from ultralytics import YOLO
|
5 |
+
import cv2
|
6 |
+
import numpy as np
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import streamlit as st
|
9 |
+
# Configuration class
|
10 |
+
class Config:
|
11 |
+
|
12 |
+
CLASSES = ['asparagus', 'avocados', 'broccoli', 'cabbage',
|
13 |
+
'celery', 'cucumber', 'green_apples',
|
14 |
+
'green_beans', 'green_capsicum', 'green_grapes', 'kiwifruit',
|
15 |
+
'lettuce', 'limes', 'peas', 'spinach']
|
16 |
+
|
17 |
+
CALORIES_DICT = {
|
18 |
+
'asparagus': 20,
|
19 |
+
'avocados': 160,
|
20 |
+
'broccoli': 55,
|
21 |
+
'cabbage': 25,
|
22 |
+
'celery': 16,
|
23 |
+
'cucumber': 16,
|
24 |
+
'green_apples': 52,
|
25 |
+
'green_beans': 31,
|
26 |
+
'green_capsicum': 20,
|
27 |
+
'green_grapes': 69,
|
28 |
+
'kiwifruit': 61,
|
29 |
+
'lettuce': 15,
|
30 |
+
'limes': 30,
|
31 |
+
'peas': 81,
|
32 |
+
'spinach': 23
|
33 |
+
}
|
34 |
+
|
35 |
+
# Load the model
|
36 |
+
@st.cache_resource
|
37 |
+
def load_model():
|
38 |
+
model = YOLO('./best.pt')
|
39 |
+
return model
|
40 |
+
|
41 |
+
# Function to make predictions on a single image
|
42 |
+
def predict_image(image_path, model, conf_threshold=0.03):
|
43 |
+
# Perform inference on the image
|
44 |
+
results = model.predict(
|
45 |
+
source=image_path,
|
46 |
+
imgsz=640,
|
47 |
+
conf=conf_threshold
|
48 |
+
)
|
49 |
+
|
50 |
+
# Load the image for visualization
|
51 |
+
image = cv2.imread(image_path)
|
52 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
53 |
+
|
54 |
+
# To store detailed information about detections
|
55 |
+
detection_details = []
|
56 |
+
|
57 |
+
# Iterate over detections
|
58 |
+
for result in results[0].boxes.data:
|
59 |
+
# Extract bounding box coordinates, confidence score, and class ID
|
60 |
+
x1, y1, x2, y2, confidence, class_id = result.cpu().numpy()
|
61 |
+
|
62 |
+
# Draw the bounding box with top confidence score
|
63 |
+
cv2.rectangle(image, (int(x1), int(y1)), (int(x2), int(y2)), color=(0, 255, 0), thickness=2)
|
64 |
+
label = f"{Config.CLASSES[int(class_id)]}: {confidence:.2f}"
|
65 |
+
cv2.putText(image, label, (int(x1), int(y1) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), thickness=1)
|
66 |
+
|
67 |
+
# Save details for printing below
|
68 |
+
detection_details.append({
|
69 |
+
"class": Config.CLASSES[int(class_id)],
|
70 |
+
"top_confidence": confidence,
|
71 |
+
"bbox": (x1, y1, x2, y2)
|
72 |
+
})
|
73 |
+
|
74 |
+
return image, detection_details
|
75 |
+
|
76 |
+
# Function to calculate detected items and their calories
|
77 |
+
def calculate_calories(detection_details):
|
78 |
+
detected_items = []
|
79 |
+
|
80 |
+
for det in detection_details:
|
81 |
+
item = det["class"]
|
82 |
+
calories = Config.CALORIES_DICT[item]
|
83 |
+
confidence = det["top_confidence"]
|
84 |
+
detected_items.append((item, calories, confidence))
|
85 |
+
|
86 |
+
return detected_items
|