import streamlit as st from PIL import Image import numpy as np import matplotlib.pyplot as plt from cal import load_model, predict_image, calculate_calories # Load the model model = load_model() # Set up the sidebar st.sidebar.title("FoodVision") st.sidebar.write("Upload an image or use your camera to take a picture.") option = st.sidebar.selectbox( 'How would you like to provide the image?', ('Upload an image', 'Use camera') ) image_path = None if option == 'Upload an image': uploaded_file = st.sidebar.file_uploader("Choose an image...", type=["jpg", "jpeg", "png", "webp"]) if uploaded_file is not None: image = Image.open(uploaded_file) if image.mode == 'RGBA': image = image.convert('RGB') image_path = "uploaded_image.jpg" image.save(image_path) elif option == 'Use camera': camera_image = st.sidebar.camera_input("Take a picture") if camera_image is not None: image = Image.open(camera_image) if image.mode == 'RGBA': image = image.convert('RGB') image_path = "camera_image.jpg" image.save(image_path) if image_path: # Display the image and classification results in columns col1, col2 = st.columns(2) with col1: st.image(image, caption='Captured Image.', use_container_width=True) st.write("") st.write("Classifying...") # Predict the image image_with_boxes, detection_details = predict_image(image_path, model) with col2: # Display the image with bounding boxes and labels st.image(image_with_boxes, caption='Processed Image.', use_container_width=True) # Calculate and display detected items and their calories detected_items = calculate_calories(detection_details) st.markdown("

Detection Results:

", unsafe_allow_html=True) for item, calories, confidence in detected_items: st.markdown(f"

✓ Detected {item} ({calories} cal/100g) - Confidence: {confidence:.2%}

", unsafe_allow_html=True) # Footer st.markdown(""" """, unsafe_allow_html=True)