import torch from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoModelForSeq2SeqLM from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan import whisper import gradio as gr import re import pandas as pd import numpy as np import os import time import logging import threading import queue from scipy.io.wavfile import write as write_wav from html import escape import traceback import spaces # Required for Hugging Face ZeroGPU compatibility # Configure logging logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', handlers=[logging.StreamHandler()] ) logger = logging.getLogger('profanity_detector') # Detect if we're running in a ZeroGPU environment IS_ZEROGPU = os.environ.get("SPACE_RUNTIME_STATELESS", "0") == "1" if os.environ.get("SPACES_ZERO_GPU") is not None: IS_ZEROGPU = True # Define device strategy that works in both environments if IS_ZEROGPU: # In ZeroGPU: always initialize on CPU, will use GPU only in @spaces.GPU functions device = torch.device("cpu") logger.info("ZeroGPU environment detected. Using CPU for initial loading.") else: # For local runs: use CUDA if available device = torch.device("cuda" if torch.cuda.is_available() else "cpu") logger.info(f"Local environment. Using device: {device}") # Global variables for models profanity_model = None profanity_tokenizer = None t5_model = None t5_tokenizer = None whisper_model = None tts_processor = None tts_model = None vocoder = None models_loaded = False # Default speaker embeddings for TTS speaker_embeddings = None # Queue for real-time audio processing audio_queue = queue.Queue() processing_active = False # Model loading with int8 quantization def load_models(): global profanity_model, profanity_tokenizer, t5_model, t5_tokenizer, whisper_model global tts_processor, tts_model, vocoder, speaker_embeddings, models_loaded try: logger.info("Loading profanity detection model...") PROFANITY_MODEL = "parsawar/profanity_model_3.1" profanity_tokenizer = AutoTokenizer.from_pretrained(PROFANITY_MODEL) # Load model without moving to CUDA directly profanity_model = AutoModelForSequenceClassification.from_pretrained( PROFANITY_MODEL, device_map=None, # Stay on CPU for now low_cpu_mem_usage=True ) # Only move to device if NOT in ZeroGPU mode if not IS_ZEROGPU and torch.cuda.is_available(): profanity_model = profanity_model.to(device) try: profanity_model = profanity_model.half() logger.info("Successfully converted profanity model to half precision") except Exception as e: logger.warning(f"Could not convert to half precision: {str(e)}") logger.info("Loading detoxification model...") T5_MODEL = "s-nlp/t5-paranmt-detox" t5_tokenizer = AutoTokenizer.from_pretrained(T5_MODEL) t5_model = AutoModelForSeq2SeqLM.from_pretrained( T5_MODEL, device_map=None, # Stay on CPU for now low_cpu_mem_usage=True ) # Only move to device if NOT in ZeroGPU mode if not IS_ZEROGPU and torch.cuda.is_available(): t5_model = t5_model.to(device) try: t5_model = t5_model.half() logger.info("Successfully converted T5 model to half precision") except Exception as e: logger.warning(f"Could not convert to half precision: {str(e)}") logger.info("Loading Whisper speech-to-text model...") # Always load on CPU in ZeroGPU mode #whisper_model = whisper.load_model("medium" if IS_ZEROGPU else "large", device="cpu") whisper_model = whisper.load_model("large-v2", device="cpu") # Only move to device if NOT in ZeroGPU mode if not IS_ZEROGPU and torch.cuda.is_available(): whisper_model = whisper_model.to(device) logger.info("Loading Text-to-Speech model...") TTS_MODEL = "microsoft/speecht5_tts" tts_processor = SpeechT5Processor.from_pretrained(TTS_MODEL) tts_model = SpeechT5ForTextToSpeech.from_pretrained( TTS_MODEL, device_map=None, # Stay on CPU for now low_cpu_mem_usage=True ) vocoder = SpeechT5HifiGan.from_pretrained( "microsoft/speecht5_hifigan", device_map=None, # Stay on CPU for now low_cpu_mem_usage=True ) # Only move to device if NOT in ZeroGPU mode if not IS_ZEROGPU and torch.cuda.is_available(): tts_model = tts_model.to(device) vocoder = vocoder.to(device) # Speaker embeddings - always on CPU for ZeroGPU speaker_embeddings = torch.zeros((1, 512)) # Only move to device if NOT in ZeroGPU mode if not IS_ZEROGPU and torch.cuda.is_available(): speaker_embeddings = speaker_embeddings.to(device) models_loaded = True logger.info("All models loaded successfully.") return "Models loaded successfully." except Exception as e: error_msg = f"Error loading models: {str(e)}\n{traceback.format_exc()}" logger.error(error_msg) return error_msg # ZeroGPU decorator: Requests GPU resources when function is called and releases them when completed. # This enables efficient GPU sharing in Hugging Face Spaces while having no effect in local environments. @spaces.GPU def detect_profanity(text: str, threshold: float = 0.5): """ Detect profanity in text with adjustable threshold Args: text: The input text to analyze threshold: Profanity detection threshold (0.0-1.0) Returns: Dictionary with analysis results """ if not models_loaded: return {"error": "Models not loaded yet. Please wait."} try: # Detect profanity and score inputs = profanity_tokenizer(text, return_tensors="pt", truncation=True, max_length=512) # In ZeroGPU, move to GPU here inside the spaces.GPU function # For local environments, it might already be on the correct device current_device = device if IS_ZEROGPU and torch.cuda.is_available(): current_device = torch.device("cuda") inputs = inputs.to(current_device) # Only in ZeroGPU mode, we need to move the model to GPU inside the function profanity_model.to(current_device) elif torch.cuda.is_available(): # Local environment with CUDA inputs = inputs.to(current_device) with torch.no_grad(): outputs = profanity_model(**inputs).logits score = torch.nn.functional.softmax(outputs, dim=1)[0][1].item() # Identify specific profane words words = re.findall(r'\b\w+\b', text) profane_words = [] word_scores = {} if score > threshold: for word in words: if len(word) < 2: # Skip very short words continue word_inputs = profanity_tokenizer(word, return_tensors="pt", truncation=True, max_length=512) if torch.cuda.is_available(): word_inputs = word_inputs.to(current_device) with torch.no_grad(): word_outputs = profanity_model(**word_inputs).logits word_score = torch.nn.functional.softmax(word_outputs, dim=1)[0][1].item() word_scores[word] = word_score if word_score > threshold: profane_words.append(word.lower()) # Move model back to CPU if in ZeroGPU mode - to free GPU memory if IS_ZEROGPU and torch.cuda.is_available(): profanity_model.to(torch.device("cpu")) # Create highlighted version of the text highlighted_text = create_highlighted_text(text, profane_words) return { "text": text, "score": score, "profanity": score > threshold, "profane_words": profane_words, "highlighted_text": highlighted_text, "word_scores": word_scores } except Exception as e: error_msg = f"Error in profanity detection: {str(e)}" logger.error(error_msg) # Make sure model is on CPU if in ZeroGPU mode - to free GPU memory if IS_ZEROGPU and torch.cuda.is_available(): try: profanity_model.to(torch.device("cpu")) except: pass return {"error": error_msg, "text": text, "score": 0, "profanity": False} def create_highlighted_text(text, profane_words): """ Create HTML-formatted text with profane words highlighted """ if not profane_words: return escape(text) # Create a regex pattern matching any of the profane words (case insensitive) pattern = r'\b(' + '|'.join(re.escape(word) for word in profane_words) + r')\b' # Replace occurrences with highlighted versions def highlight_match(match): return f'{match.group(0)}' highlighted = re.sub(pattern, highlight_match, text, flags=re.IGNORECASE) return highlighted @spaces.GPU def rephrase_profanity(text): """ Rephrase text containing profanity """ if not models_loaded: return "Models not loaded yet. Please wait." try: # Rephrase using the detoxification model inputs = t5_tokenizer(text, return_tensors="pt", truncation=True, max_length=512) # In ZeroGPU, move to GPU here inside the spaces.GPU function current_device = device if IS_ZEROGPU and torch.cuda.is_available(): current_device = torch.device("cuda") inputs = inputs.to(current_device) # Only in ZeroGPU mode, we need to move the model to GPU inside the function t5_model.to(current_device) elif torch.cuda.is_available(): # Local environment with CUDA inputs = inputs.to(current_device) # Use more conservative generation settings with error handling try: outputs = t5_model.generate( **inputs, max_length=512, num_beams=4, # Reduced from 5 to be more memory-efficient early_stopping=True, no_repeat_ngram_size=2, length_penalty=1.0 ) rephrased_text = t5_tokenizer.decode(outputs[0], skip_special_tokens=True) # Verify the output is reasonable if not rephrased_text or len(rephrased_text) < 3: logger.warning(f"T5 model produced unusable output: '{rephrased_text}'") return text # Return original if output is too short # Move model back to CPU if in ZeroGPU mode - to free GPU memory if IS_ZEROGPU and torch.cuda.is_available(): t5_model.to(torch.device("cpu")) return rephrased_text.strip() except RuntimeError as e: # Handle potential CUDA out of memory error if "CUDA out of memory" in str(e): logger.warning("CUDA out of memory in T5 model. Trying with smaller beam size...") # Try again with smaller beam size outputs = t5_model.generate( **inputs, max_length=512, num_beams=2, # Use smaller beam size early_stopping=True ) rephrased_text = t5_tokenizer.decode(outputs[0], skip_special_tokens=True) # Move model back to CPU if in ZeroGPU mode - to free GPU memory if IS_ZEROGPU and torch.cuda.is_available(): t5_model.to(torch.device("cpu")) return rephrased_text.strip() else: raise e # Re-raise if it's not a memory issue except Exception as e: error_msg = f"Error in rephrasing: {str(e)}" logger.error(error_msg) # Make sure model is on CPU if in ZeroGPU mode - to free GPU memory if IS_ZEROGPU and torch.cuda.is_available(): try: t5_model.to(torch.device("cpu")) except: pass return text # Return original text if rephrasing fails @spaces.GPU def text_to_speech(text): """ Convert text to speech using SpeechT5 """ if not models_loaded: return None try: # Create a temporary file path to save the audio temp_file = f"temp_tts_output_{int(time.time())}.wav" # Process the text input inputs = tts_processor(text=text, return_tensors="pt") # In ZeroGPU, move to GPU here inside the spaces.GPU function current_device = device if IS_ZEROGPU and torch.cuda.is_available(): current_device = torch.device("cuda") inputs = inputs.to(current_device) # Only in ZeroGPU mode, we need to move the models to GPU inside the function tts_model.to(current_device) vocoder.to(current_device) speaker_embeddings_local = speaker_embeddings.to(current_device) elif torch.cuda.is_available(): # Local environment with CUDA inputs = inputs.to(current_device) speaker_embeddings_local = speaker_embeddings else: speaker_embeddings_local = speaker_embeddings # Generate speech with a fixed speaker embedding speech = tts_model.generate_speech( inputs["input_ids"], speaker_embeddings_local, vocoder=vocoder ) # Convert from PyTorch tensor to NumPy array speech_np = speech.cpu().numpy() # Move models back to CPU if in ZeroGPU mode - to free GPU memory if IS_ZEROGPU and torch.cuda.is_available(): tts_model.to(torch.device("cpu")) vocoder.to(torch.device("cpu")) # Save as WAV file (sampling rate is 16kHz for SpeechT5) write_wav(temp_file, 16000, speech_np) return temp_file except Exception as e: error_msg = f"Error in text-to-speech conversion: {str(e)}" logger.error(error_msg) # Make sure models are on CPU if in ZeroGPU mode - to free GPU memory if IS_ZEROGPU and torch.cuda.is_available(): try: tts_model.to(torch.device("cpu")) vocoder.to(torch.device("cpu")) except: pass return None def text_analysis(input_text, threshold=0.5): """ Analyze text for profanity with adjustable threshold """ if not models_loaded: return "Models not loaded yet. Please wait for initialization to complete.", None, None try: # Detect profanity with the given threshold result = detect_profanity(input_text, threshold=threshold) # Handle error case if "error" in result: return result["error"], None, None # Process results if result["profanity"]: clean_text = rephrase_profanity(input_text) profane_words_str = ", ".join(result["profane_words"]) toxicity_score = result["score"] classification = ( "Severe Toxicity" if toxicity_score >= 0.7 else "Moderate Toxicity" if toxicity_score >= 0.5 else "Mild Toxicity" if toxicity_score >= 0.35 else "Minimal Toxicity" if toxicity_score >= 0.2 else "No Toxicity" ) # Generate audio for the rephrased text audio_output = text_to_speech(clean_text) return ( f"Profanity Score: {result['score']:.4f}\n\n" f"Profane: {result['profanity']}\n" f"Classification: {classification}\n" f"Detected Profane Words: {profane_words_str}\n\n" f"Reworded: {clean_text}" ), result["highlighted_text"], audio_output else: # If no profanity detected, just convert the original text to speech audio_output = text_to_speech(input_text) return ( f"Profanity Score: {result['score']:.4f}\n" f"Profane: {result['profanity']}\n" f"Classification: No Toxicity" ), None, audio_output except Exception as e: error_msg = f"Error in text analysis: {str(e)}\n{traceback.format_exc()}" logger.error(error_msg) return error_msg, None, None # ZeroGPU decorator with custom duration: Allocates GPU for up to 120 seconds to handle longer audio processing. # Longer durations ensure processing isn't cut off, while shorter durations improve queue priority. @spaces.GPU(duration=120) def analyze_audio(audio_path, threshold=0.5): """ Analyze audio for profanity with adjustable threshold """ if not models_loaded: return "Models not loaded yet. Please wait for initialization to complete.", None, None if not audio_path: return "No audio provided.", None, None try: # In ZeroGPU mode, models need to be moved to GPU if IS_ZEROGPU and torch.cuda.is_available(): current_device = torch.device("cuda") whisper_model.to(current_device) # Transcribe audio result = whisper_model.transcribe(audio_path, fp16=torch.cuda.is_available()) text = result["text"] # Move whisper model back to CPU if in ZeroGPU mode if IS_ZEROGPU and torch.cuda.is_available(): whisper_model.to(torch.device("cpu")) # Detect profanity with user-defined threshold analysis = detect_profanity(text, threshold=threshold) # Handle error case if "error" in analysis: return f"Error during analysis: {analysis['error']}\nTranscription: {text}", None, None if analysis["profanity"]: clean_text = rephrase_profanity(text) else: clean_text = text # Generate audio for the rephrased text audio_output = text_to_speech(clean_text) return ( f"Transcription: {text}\n\n" f"Profanity Score: {analysis['score']:.4f}\n" f"Profane: {'Yes' if analysis['profanity'] else 'No'}\n" f"Classification: {'Severe Toxicity' if analysis['score'] >= 0.7 else 'Moderate Toxicity' if analysis['score'] >= 0.5 else 'Mild Toxicity' if analysis['score'] >= 0.35 else 'Minimal Toxicity' if analysis['score'] >= 0.2 else 'No Toxicity'}\n" f"Profane Words: {', '.join(analysis['profane_words']) if analysis['profanity'] else 'None'}\n\n" f"Reworded: {clean_text}" ), analysis["highlighted_text"] if analysis["profanity"] else None, audio_output except Exception as e: error_msg = f"Error in audio analysis: {str(e)}\n{traceback.format_exc()}" logger.error(error_msg) # Make sure models are on CPU if in ZeroGPU mode if IS_ZEROGPU and torch.cuda.is_available(): try: whisper_model.to(torch.device("cpu")) except: pass return error_msg, None, None # Global variables to store streaming results stream_results = { "transcript": "", "profanity_info": "", "clean_text": "", "audio_output": None } @spaces.GPU def process_stream_chunk(audio_chunk): """Process an audio chunk from the streaming interface""" global stream_results, processing_active if not processing_active or not models_loaded: return stream_results["transcript"], stream_results["profanity_info"], stream_results["clean_text"], stream_results["audio_output"] try: # The format of audio_chunk from Gradio streaming can vary # It can be: (numpy_array, sample_rate), (filepath, sample_rate, numpy_array) or just numpy_array # Let's handle all possible cases if audio_chunk is None: # No audio received return stream_results["transcript"], stream_results["profanity_info"], stream_results["clean_text"], stream_results["audio_output"] # Different Gradio versions return different formats temp_file = None if isinstance(audio_chunk, tuple): if len(audio_chunk) == 2: # Format: (numpy_array, sample_rate) samples, sample_rate = audio_chunk temp_file = f"temp_stream_{int(time.time())}.wav" write_wav(temp_file, sample_rate, samples) elif len(audio_chunk) == 3: # Format: (filepath, sample_rate, numpy_array) filepath, sample_rate, samples = audio_chunk # Use the provided filepath if it exists if os.path.exists(filepath): temp_file = filepath else: # Create our own file temp_file = f"temp_stream_{int(time.time())}.wav" write_wav(temp_file, sample_rate, samples) elif isinstance(audio_chunk, np.ndarray): # Just a numpy array, assume sample rate of 16000 for Whisper samples = audio_chunk sample_rate = 16000 temp_file = f"temp_stream_{int(time.time())}.wav" write_wav(temp_file, sample_rate, samples) elif isinstance(audio_chunk, str) and os.path.exists(audio_chunk): # It's a filepath temp_file = audio_chunk else: # Unknown format stream_results["profanity_info"] = f"Error: Unknown audio format: {type(audio_chunk)}" return stream_results["transcript"], stream_results["profanity_info"], stream_results["clean_text"], stream_results["audio_output"] # Make sure we have a valid file to process if not temp_file or not os.path.exists(temp_file): stream_results["profanity_info"] = "Error: Failed to create audio file for processing" return stream_results["transcript"], stream_results["profanity_info"], stream_results["clean_text"], stream_results["audio_output"] # In ZeroGPU mode, move whisper model to GPU if IS_ZEROGPU and torch.cuda.is_available(): current_device = torch.device("cuda") whisper_model.to(current_device) # Process with Whisper result = whisper_model.transcribe(temp_file, fp16=torch.cuda.is_available()) transcript = result["text"].strip() # Move whisper model back to CPU if in ZeroGPU mode if IS_ZEROGPU and torch.cuda.is_available(): whisper_model.to(torch.device("cpu")) # Skip processing if transcript is empty if not transcript: # Clean up temp file if we created it if temp_file and temp_file.startswith("temp_stream_") and os.path.exists(temp_file): try: os.remove(temp_file) except: pass # Return current state, but update profanity info stream_results["profanity_info"] = "No speech detected. Keep talking..." return stream_results["transcript"], stream_results["profanity_info"], stream_results["clean_text"], stream_results["audio_output"] # Update transcript stream_results["transcript"] = transcript # Analyze for profanity analysis = detect_profanity(transcript, threshold=0.5) # Check if profanity was detected if analysis.get("profanity", False): profane_words = ", ".join(analysis.get("profane_words", [])) stream_results["profanity_info"] = f"Profanity Detected (Score: {analysis['score']:.2f})\nProfane Words: {profane_words}" # Rephrase to clean text clean_text = rephrase_profanity(transcript) stream_results["clean_text"] = clean_text # Create audio from cleaned text audio_file = text_to_speech(clean_text) if audio_file: stream_results["audio_output"] = audio_file else: stream_results["profanity_info"] = f"No Profanity Detected (Score: {analysis['score']:.2f})" stream_results["clean_text"] = transcript # Use original text for audio if no profanity audio_file = text_to_speech(transcript) if audio_file: stream_results["audio_output"] = audio_file # Clean up temporary file if we created it if temp_file and temp_file.startswith("temp_stream_") and os.path.exists(temp_file): try: os.remove(temp_file) except: pass return stream_results["transcript"], stream_results["profanity_info"], stream_results["clean_text"], stream_results["audio_output"] except Exception as e: error_msg = f"Error processing streaming audio: {str(e)}\n{traceback.format_exc()}" logger.error(error_msg) # Make sure all models are on CPU if in ZeroGPU mode if IS_ZEROGPU and torch.cuda.is_available(): try: whisper_model.to(torch.device("cpu")) profanity_model.to(torch.device("cpu")) t5_model.to(torch.device("cpu")) tts_model.to(torch.device("cpu")) vocoder.to(torch.device("cpu")) except: pass # Update profanity info with error message stream_results["profanity_info"] = f"Error: {str(e)}" return stream_results["transcript"], stream_results["profanity_info"], stream_results["clean_text"], stream_results["audio_output"] def start_streaming(): """Start the real-time audio processing""" global processing_active, stream_results if not models_loaded: return "Models not loaded yet. Please wait for initialization to complete." if processing_active: return "Streaming is already active." # Reset results stream_results = { "transcript": "", "profanity_info": "Waiting for audio input...", "clean_text": "", "audio_output": None } processing_active = True logger.info("Started real-time audio processing") return "Started real-time audio processing. Speak into your microphone." def stop_streaming(): """Stop the real-time audio processing""" global processing_active if not processing_active: return "Streaming is not active." processing_active = False return "Stopped real-time audio processing." def create_ui(): """Create the Gradio UI""" # Simple CSS for styling css = """ /* Fix for dark mode text visibility */ .dark .gr-input, .dark textarea, .dark .gr-textbox, .dark [data-testid="textbox"] { color: white !important; background-color: #2c303b !important; } .dark .gr-box, .dark .gr-form, .dark .gr-panel, .dark .gr-block { color: white !important; } /* Highlighted text container - with dark mode fixes */ .highlighted-text { border: 1px solid #ddd; border-radius: 5px; padding: 10px; margin: 10px 0; background-color: #f9f9f9; font-family: sans-serif; max-height: 300px; overflow-y: auto; color: #333 !important; /* Ensure text is dark for light mode */ } /* Dark mode specific styling for highlighted text */ .dark .highlighted-text { background-color: #2c303b !important; color: #ffffff !important; border-color: #4a4f5a !important; } /* Make sure text in the highlighted container remains visible in both themes */ .highlighted-text, .dark .highlighted-text { color-scheme: light dark; } /* Loading animation */ .loading { display: inline-block; width: 20px; height: 20px; border: 3px solid rgba(0,0,0,.3); border-radius: 50%; border-top-color: #3498db; animation: spin 1s ease-in-out infinite; } @keyframes spin { to { transform: rotate(360deg); } } """ # Create a custom theme based on Soft but explicitly set to light mode light_theme = gr.themes.Soft( primary_hue="blue", secondary_hue="blue", neutral_hue="gray" ) # Set theme to light mode and disable theme switching with gr.Blocks(css=css, theme=light_theme, analytics_enabled=False) as ui: # Model initialization init_status = gr.State("") gr.Markdown( """ # Profanity Detection & Replacement System Detect, rephrase, and listen to cleaned content from text or audio! """, elem_classes="header" ) # The rest of your UI code remains unchanged... # Initialize models button with status indicators with gr.Row(): with gr.Column(scale=3): init_button = gr.Button("Initialize Models", variant="primary") init_output = gr.Textbox(label="Initialization Status", interactive=False) with gr.Column(scale=1): model_status = gr.HTML( """

Model Status: Not Loaded

""" ) # Global sensitivity slider sensitivity = gr.Slider( minimum=0.2, maximum=0.95, value=0.5, step=0.05, label="Profanity Detection Sensitivity", info="Lower values are more permissive, higher values are more strict" ) with gr.Row(): with gr.Column(scale=3): gr.Markdown("### Choose an Input Method") # Text Analysis with gr.Tabs(): with gr.TabItem("Text Analysis", elem_id="text-tab"): with gr.Row(): text_input = gr.Textbox( label="Enter Text", placeholder="Type your text here...", lines=5, elem_classes="textbox" ) with gr.Row(): text_button = gr.Button("Analyze Text", variant="primary") clear_button = gr.Button("Clear", variant="secondary") with gr.Row(): with gr.Column(scale=2): text_output = gr.Textbox(label="Results", lines=10) highlighted_output = gr.HTML(label="Detected Profanity", elem_classes="highlighted-text") with gr.Column(scale=1): text_audio_output = gr.Audio(label="Rephrased Audio", type="filepath") # Audio Analysis with gr.TabItem("Audio Analysis", elem_id="audio-tab"): gr.Markdown("### Upload or Record Audio") audio_input = gr.Audio( label="Audio Input", type="filepath", sources=["microphone", "upload"] #waveform_options=gr.WaveformOptions(waveform_color="#4a90e2") ) with gr.Row(): audio_button = gr.Button("Analyze Audio", variant="primary") clear_audio_button = gr.Button("Clear", variant="secondary") with gr.Row(): with gr.Column(scale=2): audio_output = gr.Textbox(label="Results", lines=10, show_copy_button=True) audio_highlighted_output = gr.HTML(label="Detected Profanity", elem_classes="highlighted-text") with gr.Column(scale=1): clean_audio_output = gr.Audio(label="Rephrased Audio", type="filepath") # Real-time Streaming with gr.TabItem("Real-time Streaming", elem_id="streaming-tab"): gr.Markdown("### Real-time Audio Processing") gr.Markdown("Enable real-time audio processing to filter profanity as you speak.") with gr.Row(): with gr.Column(scale=1): start_stream_button = gr.Button("Start Real-time Processing", variant="primary") stop_stream_button = gr.Button("Stop Real-time Processing", variant="secondary") stream_status = gr.Textbox(label="Streaming Status", value="Inactive", interactive=False) # Add microphone input specifically for streaming stream_audio_input = gr.Audio( label="Streaming Microphone Input", type="filepath", sources=["microphone"], streaming=True #waveform_options=gr.WaveformOptions(waveform_color="#4a90e2") ) with gr.Column(scale=2): # Add elements to display streaming results stream_transcript = gr.Textbox(label="Live Transcription", lines=2) stream_profanity_info = gr.Textbox(label="Profanity Detection", lines=2) stream_clean_text = gr.Textbox(label="Clean Text", lines=2) # Element to play the clean audio stream_audio_output = gr.Audio(label="Clean Audio Output", type="filepath") gr.Markdown(""" ### How Real-time Streaming Works 1. Click "Start Real-time Processing" to begin 2. Use the microphone input to speak 3. The system will process audio in real-time, detect and clean profanity 4. You'll see the transcription, profanity info, and clean output appear above 5. Click "Stop Real-time Processing" when finished Note: This feature requires microphone access and may have some latency. """) # Event handlers def update_model_status(status_text): """Update both the status text and the visual indicator""" if "successfully" in status_text.lower(): status_html = """

Model Status: Loaded ✓

""" elif "error" in status_text.lower(): status_html = """

Model Status: Error ✗

""" else: status_html = """

Model Status: Loading...

""" return status_text, status_html init_button.click( lambda: update_model_status("Loading models, please wait..."), inputs=[], outputs=[init_output, model_status] ).then( load_models, inputs=[], outputs=[init_output] ).then( update_model_status, inputs=[init_output], outputs=[init_output, model_status] ) text_button.click( text_analysis, inputs=[text_input, sensitivity], outputs=[text_output, highlighted_output, text_audio_output] ) clear_button.click( lambda: [None, None, None], inputs=None, outputs=[text_input, highlighted_output, text_audio_output] ) audio_button.click( analyze_audio, inputs=[audio_input, sensitivity], outputs=[audio_output, audio_highlighted_output, clean_audio_output] ) clear_audio_button.click( lambda: [None, None, None, None], inputs=None, outputs=[audio_input, audio_output, audio_highlighted_output, clean_audio_output] ) start_stream_button.click( start_streaming, inputs=[], outputs=[stream_status] ) stop_stream_button.click( stop_streaming, inputs=[], outputs=[stream_status] ) # Connect the streaming audio input to our processing function # First function to debug the audio chunk format def debug_audio_format(audio_chunk): """Debug function to log audio format""" format_info = f"Type: {type(audio_chunk)}" if isinstance(audio_chunk, tuple): format_info += f", Length: {len(audio_chunk)}" for i, item in enumerate(audio_chunk): format_info += f", Item {i} type: {type(item)}" logger.info(f"Audio chunk format: {format_info}") return audio_chunk # Use the stream method with preprocessor for debugging stream_audio_input.stream( fn=process_stream_chunk, inputs=[stream_audio_input], outputs=[stream_transcript, stream_profanity_info, stream_clean_text, stream_audio_output], preprocess=debug_audio_format ) return ui if __name__ == "__main__": # Set environment variable to avoid OpenMP conflicts os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE' # Create and launch the UI ui = create_ui() ui.launch(server_name="0.0.0.0", share=True)