Spaces:
Running
Running
Create appli.py
Browse files
appli.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import subprocess
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import gradio as gr
|
6 |
+
from clip_interrogator import Config, Interrogator
|
7 |
+
|
8 |
+
|
9 |
+
CACHE_URLS = [
|
10 |
+
'https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-H-14_laion2b_s32b_b79k_artists.pkl',
|
11 |
+
'https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-H-14_laion2b_s32b_b79k_flavors.pkl',
|
12 |
+
'https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-H-14_laion2b_s32b_b79k_mediums.pkl',
|
13 |
+
'https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-H-14_laion2b_s32b_b79k_movements.pkl',
|
14 |
+
'https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-H-14_laion2b_s32b_b79k_trendings.pkl',
|
15 |
+
]
|
16 |
+
os.makedirs('cache', exist_ok=True)
|
17 |
+
for url in CACHE_URLS:
|
18 |
+
subprocess.run(['wget', url, '-P', 'cache'], stdout=subprocess.PIPE).stdout.decode('utf-8')
|
19 |
+
|
20 |
+
|
21 |
+
config = Config()
|
22 |
+
config.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
23 |
+
config.blip_offload = False if torch.cuda.is_available() else True
|
24 |
+
config.chunk_size = 2048
|
25 |
+
config.flavor_intermediate_count = 512
|
26 |
+
config.blip_num_beams = 64
|
27 |
+
ci = Interrogator(config)
|
28 |
+
|
29 |
+
|
30 |
+
def inference(image, mode, best_max_flavors):
|
31 |
+
image = image.convert('RGB')
|
32 |
+
if mode == 'best':
|
33 |
+
prompt_result = ci.interrogate(image, max_flavors=int(best_max_flavors))
|
34 |
+
elif mode == 'classic':
|
35 |
+
prompt_result = ci.interrogate_classic(image)
|
36 |
+
else:
|
37 |
+
prompt_result = ci.interrogate_fast(image)
|
38 |
+
return prompt_result
|
39 |
+
|
40 |
+
|
41 |
+
with gr.Blocks() as demo:
|
42 |
+
with gr.Column():
|
43 |
+
gr.Markdown("# CLIP Interrogator")
|
44 |
+
input_image = gr.Image(type='pil', elem_id="input-img")
|
45 |
+
with gr.Row():
|
46 |
+
mode_input = gr.Radio(['best', 'classic', 'fast'], label='Select mode', value='best')
|
47 |
+
flavor_input = gr.Slider(minimum=2, maximum=48, step=2, value=32, label='best mode max flavors')
|
48 |
+
submit_btn = gr.Button("Submit")
|
49 |
+
output_text = gr.Textbox(label="Description Output")
|
50 |
+
submit_btn.click(
|
51 |
+
fn=inference,
|
52 |
+
inputs=[input_image, mode_input, flavor_input],
|
53 |
+
outputs=[output_text],
|
54 |
+
concurrency_limit=10
|
55 |
+
)
|
56 |
+
|
57 |
+
demo.queue().launch()
|