Spaces:
Build error
Build error
import os | |
os.system("hub install deoldify==1.0.1") | |
import gradio as gr | |
import paddlehub as hub | |
from pathlib import Path | |
from datetime import datetime | |
from typing import Optional | |
model = hub.Module(name='deoldify') | |
# NOTE: Max is 45 with 11GB video cards. 35 is a good default | |
render_factor=40 | |
def colorize_image(image): | |
# now = datetime.now().strftime("%Y%m%d-%H%M%S-%f") | |
if not os.path.exists("./output"): | |
os.makedirs("./output") | |
# if image is not None: | |
# image.save(f"./output/{now}-input.jpg") | |
model.predict(image.name) | |
return f'./output/DeOldify/'+Path(image.name).stem+".png" | |
# def inference(img, version, scale, weight): | |
def inferenceColorize(img, scale): | |
# weight /= 100 | |
print(img, scale) | |
''' | |
try: | |
extension = os.path.splitext(os.path.basename(str(img)))[1] | |
img = cv2.imread(img, cv2.IMREAD_UNCHANGED) | |
if len(img.shape) == 3 and img.shape[2] == 4: | |
img_mode = 'RGBA' | |
elif len(img.shape) == 2: # for gray inputs | |
img_mode = None | |
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) | |
else: | |
img_mode = None | |
h, w = img.shape[0:2] | |
if h < 300: | |
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4) | |
try: | |
# _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True, weight=weight) | |
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True) | |
except RuntimeError as error: | |
print('Error', error) | |
try: | |
if scale != 2: | |
interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4 | |
h, w = img.shape[0:2] | |
output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation) | |
except Exception as error: | |
print('wrong scale input.', error) | |
if img_mode == 'RGBA': # RGBA images should be saved in png format | |
extension = 'png' | |
else: | |
extension = 'jpg' | |
''' | |
os.makedirs('output', exist_ok=True) | |
model.predict(img.name) | |
save_path = f'output/DeOldify/'+Path(img.name).stem+'.{extension}' | |
''' | |
cv2.imwrite(save_path, output) | |
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB) | |
''' | |
return img, save_path | |
''' | |
except Exception as error: | |
print('global exception', error) | |
return None, None | |
''' | |
colorize = gr.Interface( | |
inferenceColorize, [ | |
gr.Markdown("Colorize old black & white photos"), | |
gr.Image(type="filepath", label="Input"), | |
gr.inputs.Number(label="Rescaling factor", default=2), | |
gr.Button("Upscale & Colorize!") | |
# gr.Slider(0, 100, label='Weight, only for CodeFormer. 0 for better quality, 100 for better identity', default=50) | |
], [ | |
gr.outputs.Image(type="numpy", label="Output (The colorized image)"), | |
gr.outputs.File(label="Download the colorized image") | |
]) | |
colorize.queue(concurrency_count=4) | |
colorize.launch() | |
''' | |
def create_interface(): | |
with gr.Blocks() as enhancer: | |
gr.Markdown("Colorize old black & white photos") | |
with gr.Column(scale=1, label = "Colorize photo", visible=True) as colorize_column: | |
colorize_input = gr.Image(type="file") | |
colorize_button = gr.Button("Colorize!") | |
colorize_output = gr.outputs.Image(type="numpy", label="Output (The Colorized image)") | |
download_colorize_button = gr.outputs.File(label="Download the colorized image!") | |
colorize_button.click(colorize_image, inputs=colorize_input, outputs=colorize_output) | |
enhancer.launch() | |
def run_code(): | |
create_interface() | |
# The main function | |
run_code() | |
''' |