Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from spectro import wav_bytes_from_spectrogram_image
|
6 |
+
from diffusers import StableDiffusionPipeline
|
7 |
+
|
8 |
+
from transformers import BlipForConditionalGeneration, BlipProcessor
|
9 |
+
|
10 |
+
from share_btn import community_icon_html, loading_icon_html, share_js
|
11 |
+
|
12 |
+
model_id = "riffusion/riffusion-model-v1"
|
13 |
+
blip_model_id = "Salesforce/blip-image-captioning-base"
|
14 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id)
|
15 |
+
pipe = pipe.to("cuda")
|
16 |
+
|
17 |
+
blip_model = BlipForConditionalGeneration.from_pretrained(blip_model_id, torch_dtype=torch.float16).to("cuda")
|
18 |
+
processor = BlipProcessor.from_pretrained(blip_model_id)
|
19 |
+
|
20 |
+
def predict(image):
|
21 |
+
inputs = processor(image, return_tensors="pt").to("cuda", torch.float16)
|
22 |
+
output_blip = blip_model.generate(**inputs)
|
23 |
+
prompt = processor.decode(output_blip[0], skip_special_tokens=True)
|
24 |
+
|
25 |
+
spec = pipe(prompt).images[0]
|
26 |
+
print(spec)
|
27 |
+
wav = wav_bytes_from_spectrogram_image(spec)
|
28 |
+
with open("output.wav", "wb") as f:
|
29 |
+
f.write(wav[0].getbuffer())
|
30 |
+
return spec, 'output.wav', gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
|
31 |
+
|
32 |
+
title = """
|
33 |
+
<div style="text-align: center; max-width: 500px; margin: 0 auto;">
|
34 |
+
<div
|
35 |
+
style="
|
36 |
+
display: inline-flex;
|
37 |
+
align-items: center;
|
38 |
+
gap: 0.8rem;
|
39 |
+
font-size: 1.75rem;
|
40 |
+
margin-bottom: 10px;
|
41 |
+
"
|
42 |
+
>
|
43 |
+
<h1 style="font-weight: 600; margin-bottom: 7px;">
|
44 |
+
Riffusion real-time prompt to image and to music generation system
|
45 |
+
</h1>
|
46 |
+
</div>
|
47 |
+
<p style="margin-bottom: 10px;font-size: 94%;font-weight: 100;line-height: 1.5em;">
|
48 |
+
Describe a musical prompt and generate a respective spectrogram image & musical sound associated with.
|
49 |
+
</div>
|
50 |
+
"""
|
51 |
+
|
52 |
+
article = """
|
53 |
+
<p style="font-size: 0.8em;line-height: 1.2em;border: 1px solid #374151;border-radius: 8px;padding: 20px;">
|
54 |
+
About the model: Riffusion is a latent text2img diffusion model capable of generating spectrogram images from a given text input prompts. These generated spectrograms are again then utilised to get converted into audio clips.
|
55 |
+
<br />—
|
56 |
+
<br />The Riffusion model was created by fine-tuning the Stable-Diffusion-v1-5 checkpoint.
|
57 |
+
<br />—
|
58 |
+
<br />The model is intended for research purposes only. Possible research areas and tasks include
|
59 |
+
generation of artworks, audio, and use in creative processes, applications in educational or creative tools, research on generative models.
|
60 |
+
</p>
|
61 |
+
<div class="footer">
|
62 |
+
<p>
|
63 |
+
<a href="https://huggingface.co/riffusion/riffusion-model-v1" target="_blank">Riffusion model</a> by Seth Forsgren and Hayk Martiros -
|
64 |
+
<a href="https://github.com/salesforce/BLIP" target="_blank"> BLIP Model </a> by Junnan Li et al. - Demo forked from 🤗 <a href="https://huggingface.co/nightfury" target="_blank">Nightfury</a>'s demo
|
65 |
+
</p>
|
66 |
+
</div>
|
67 |
+
"""
|
68 |
+
|
69 |
+
css = '''
|
70 |
+
#col-container, #col-container-2 {max-width: 510px; margin-left: auto; margin-right: auto;}
|
71 |
+
a {text-decoration-line: underline; font-weight: 600;}
|
72 |
+
div#record_btn > .mt-6 {
|
73 |
+
margin-top: 0!important;
|
74 |
+
}
|
75 |
+
div#record_btn > .mt-6 button {
|
76 |
+
width: 100%;
|
77 |
+
height: 40px;
|
78 |
+
}
|
79 |
+
.footer {
|
80 |
+
margin-bottom: 45px;
|
81 |
+
margin-top: 10px;
|
82 |
+
text-align: center;
|
83 |
+
border-bottom: 1px solid #e5e5e5;
|
84 |
+
}
|
85 |
+
.footer>p {
|
86 |
+
font-size: .8rem;
|
87 |
+
display: inline-block;
|
88 |
+
padding: 0 10px;
|
89 |
+
transform: translateY(10px);
|
90 |
+
background: white;
|
91 |
+
}
|
92 |
+
.dark .footer {
|
93 |
+
border-color: #303030;
|
94 |
+
}
|
95 |
+
.dark .footer>p {
|
96 |
+
background: #0b0f19;
|
97 |
+
}
|
98 |
+
.animate-spin {
|
99 |
+
animation: spin 1s linear infinite;
|
100 |
+
}
|
101 |
+
@keyframes spin {
|
102 |
+
from {
|
103 |
+
transform: rotate(0deg);
|
104 |
+
}
|
105 |
+
to {
|
106 |
+
transform: rotate(360deg);
|
107 |
+
}
|
108 |
+
}
|
109 |
+
#share-btn-container {
|
110 |
+
display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
|
111 |
+
}
|
112 |
+
#share-btn {
|
113 |
+
all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0;
|
114 |
+
}
|
115 |
+
#share-btn * {
|
116 |
+
all: unset;
|
117 |
+
}
|
118 |
+
#share-btn-container div:nth-child(-n+2){
|
119 |
+
width: auto !important;
|
120 |
+
min-height: 0px !important;
|
121 |
+
}
|
122 |
+
#share-btn-container .wrap {
|
123 |
+
display: none !important;
|
124 |
+
}
|
125 |
+
'''
|
126 |
+
|
127 |
+
|
128 |
+
|
129 |
+
with gr.Blocks(css=css) as demo:
|
130 |
+
|
131 |
+
with gr.Column(elem_id="col-container"):
|
132 |
+
|
133 |
+
gr.HTML(title)
|
134 |
+
|
135 |
+
# prompt_input = gr.Textbox(placeholder="a cat diva singing in a New York jazz club", label="Musical prompt", elem_id="prompt-in")
|
136 |
+
image_input = gr.Image()
|
137 |
+
send_btn = gr.Button(value="Get a new riffusion spectrogram ! ", elem_id="submit-btn")
|
138 |
+
|
139 |
+
with gr.Column(elem_id="col-container-2"):
|
140 |
+
|
141 |
+
spectrogram_output = gr.Image(label="riffusion spectrogram image result", elem_id="img-out")
|
142 |
+
sound_output = gr.Audio(type='filepath', label="riffusion spectrogram sound", elem_id="music-out")
|
143 |
+
|
144 |
+
with gr.Group(elem_id="share-btn-container"):
|
145 |
+
community_icon = gr.HTML(community_icon_html, visible=False)
|
146 |
+
loading_icon = gr.HTML(loading_icon_html, visible=False)
|
147 |
+
share_button = gr.Button("Share to community", elem_id="share-btn", visible=False)
|
148 |
+
|
149 |
+
gr.HTML(article)
|
150 |
+
|
151 |
+
send_btn.click(predict, inputs=[image_input], outputs=[spectrogram_output, sound_output, share_button, community_icon, loading_icon])
|
152 |
+
share_button.click(None, [], [], _js=share_js)
|
153 |
+
|
154 |
+
demo.queue(max_size=250).launch(debug=True)
|
155 |
+
|