Spaces:
Runtime error
Runtime error
Upload 5 files
Browse files- Model/mango_model.h5 +3 -0
- README.md +4 -4
- app.py +75 -0
- dataset_labels.txt +2 -0
- requirements.txt +0 -0
Model/mango_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d044730f579c767f367bfd8bbcc96c61f6b8fa2fe28a5284b9d7069b86487a99
|
3 |
+
size 107572392
|
README.md
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
---
|
2 |
title: Mango Ripeness Classifier
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: streamlit
|
7 |
-
sdk_version: 1.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
|
|
1 |
---
|
2 |
title: Mango Ripeness Classifier
|
3 |
+
emoji: 🥭
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: pink
|
6 |
sdk: streamlit
|
7 |
+
sdk_version: 1.25.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
app.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# All imports
|
2 |
+
import streamlit as st
|
3 |
+
import tensorflow as tf
|
4 |
+
from tensorflow import keras
|
5 |
+
from PIL import Image
|
6 |
+
from tensorflow.keras.preprocessing import image
|
7 |
+
import io
|
8 |
+
from collections import Counter
|
9 |
+
import numpy as np
|
10 |
+
|
11 |
+
def load_image():
|
12 |
+
uploaded_file = st.file_uploader(label='Pick an image to test')
|
13 |
+
if uploaded_file is not None:
|
14 |
+
image_data = uploaded_file.getvalue()
|
15 |
+
st.image(image_data)
|
16 |
+
|
17 |
+
def load_models():
|
18 |
+
model_name = 'Model/mango_model.h5'
|
19 |
+
model = tf.keras.models.load_model(model_name)
|
20 |
+
return model
|
21 |
+
|
22 |
+
def load_labels():
|
23 |
+
with open('dataset_labels.txt', 'r') as file:
|
24 |
+
data = file.read().splitlines()
|
25 |
+
mango_dict = dict(enumerate(data, 1))
|
26 |
+
return mango_dict
|
27 |
+
|
28 |
+
def load_image():
|
29 |
+
uploaded_file = st.file_uploader(label='Pick an image to test')
|
30 |
+
if uploaded_file is not None:
|
31 |
+
image_data = uploaded_file.getvalue()
|
32 |
+
st.image(image_data)
|
33 |
+
img = Image.open(io.BytesIO(image_data))
|
34 |
+
img = img.resize((224,224))
|
35 |
+
return img
|
36 |
+
else:
|
37 |
+
return None
|
38 |
+
|
39 |
+
def predict(model, categories, img):
|
40 |
+
img_array = tf.keras.preprocessing.image.img_to_array(img)
|
41 |
+
prediction = [img_array]
|
42 |
+
prediction_test = [1]
|
43 |
+
test_ds = tf.data.Dataset.from_tensor_slices((prediction, prediction_test))
|
44 |
+
test_ds = test_ds.cache().batch(32).prefetch(buffer_size = tf.data.experimental.AUTOTUNE)
|
45 |
+
|
46 |
+
prediction = model.predict(test_ds)
|
47 |
+
prediction_dict = dict(enumerate(prediction.flatten(), 1))
|
48 |
+
k = Counter(prediction_dict)
|
49 |
+
|
50 |
+
# Finding 3 highest values
|
51 |
+
high = k.most_common(3)
|
52 |
+
|
53 |
+
percentages = []
|
54 |
+
flowers = []
|
55 |
+
for i in high:
|
56 |
+
key, value = i
|
57 |
+
flowers.append(categories[key])
|
58 |
+
percentages.append(np.round(value*100, 2))
|
59 |
+
return flowers, percentages
|
60 |
+
|
61 |
+
def main():
|
62 |
+
st.title('Mango Ripeness Classifier 🥭')
|
63 |
+
model = load_models()
|
64 |
+
categories = load_labels()
|
65 |
+
image = load_image()
|
66 |
+
result = st.button('Run on image')
|
67 |
+
if result:
|
68 |
+
st.write('Calculating results...')
|
69 |
+
flowers, percentages = predict(model, categories, image)
|
70 |
+
st.text(flowers)
|
71 |
+
st.text(percentages)
|
72 |
+
|
73 |
+
if __name__ == '__main__':
|
74 |
+
main()
|
75 |
+
|
dataset_labels.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
unripe
|
2 |
+
ripe
|
requirements.txt
ADDED
Binary file (4.57 kB). View file
|
|