nihal177 commited on
Commit
d1d0a4e
·
verified ·
1 Parent(s): f3162b2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -23
app.py CHANGED
@@ -18,12 +18,6 @@ def load_models():
18
  model_name = 'Model/mango_model.h5'
19
  model = tf.keras.models.load_model(model_name)
20
  return model
21
-
22
- def load_labels():
23
- with open('dataset_labels.txt', 'r') as file:
24
- data = file.read().splitlines()
25
- mango_dict = dict(enumerate(data, 1))
26
- return mango_dict
27
 
28
  def load_image():
29
  uploaded_file = st.file_uploader(label='Pick an image to test')
@@ -36,7 +30,7 @@ def load_image():
36
  else:
37
  return None
38
 
39
- def predict(model, categories, img):
40
  img_array = tf.keras.preprocessing.image.img_to_array(img)
41
  prediction = [img_array]
42
  prediction_test = [1]
@@ -44,31 +38,20 @@ def predict(model, categories, img):
44
  test_ds = test_ds.cache().batch(32).prefetch(buffer_size = tf.data.experimental.AUTOTUNE)
45
 
46
  prediction = model.predict(test_ds)
47
- prediction_dict = dict(enumerate(prediction.flatten(), 1))
48
- k = Counter(prediction_dict)
49
-
50
- # Finding 3 highest values
51
- high = k.most_common(3)
52
 
53
- percentages = []
54
- flowers = []
55
- for i in high:
56
- key, value = i
57
- flowers.append(categories[key])
58
- percentages.append(np.round(value*100, 2))
59
- return flowers, percentages
60
 
61
  def main():
62
  st.title('Mango Ripeness Classifier 🥭')
63
  model = load_models()
64
- categories = load_labels()
65
  image = load_image()
66
  result = st.button('Run on image')
67
  if result:
68
  st.write('Calculating results...')
69
- flowers, percentages = predict(model, categories, image)
70
- st.text(flowers)
71
- st.text(percentages)
72
 
73
  if __name__ == '__main__':
74
  main()
 
18
  model_name = 'Model/mango_model.h5'
19
  model = tf.keras.models.load_model(model_name)
20
  return model
 
 
 
 
 
 
21
 
22
  def load_image():
23
  uploaded_file = st.file_uploader(label='Pick an image to test')
 
30
  else:
31
  return None
32
 
33
+ def predict(model, img):
34
  img_array = tf.keras.preprocessing.image.img_to_array(img)
35
  prediction = [img_array]
36
  prediction_test = [1]
 
38
  test_ds = test_ds.cache().batch(32).prefetch(buffer_size = tf.data.experimental.AUTOTUNE)
39
 
40
  prediction = model.predict(test_ds)
 
 
 
 
 
41
 
42
+ if prediction[0]>0.5:
43
+ return 'unripe'
44
+ else:
45
+ return 'ripe'
 
 
 
46
 
47
  def main():
48
  st.title('Mango Ripeness Classifier 🥭')
49
  model = load_models()
 
50
  image = load_image()
51
  result = st.button('Run on image')
52
  if result:
53
  st.write('Calculating results...')
54
+ st.write(predict(model, image))
 
 
55
 
56
  if __name__ == '__main__':
57
  main()