File size: 5,265 Bytes
ac750db
a804ced
 
 
 
 
 
 
ac750db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a804ced
 
ac750db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a804ced
 
ac750db
a804ced
ac750db
 
 
 
 
 
 
 
 
 
 
a804ced
 
 
 
ac750db
 
 
 
 
a804ced
ac750db
 
 
 
 
 
 
 
 
 
a804ced
ac750db
 
 
 
 
 
 
 
a804ced
ac750db
 
 
a804ced
ac750db
 
 
 
 
 
 
1fdb52f
ac750db
1fdb52f
ac750db
1fdb52f
ac750db
 
 
 
1fdb52f
ac750db
 
 
 
a804ced
ac750db
 
 
 
 
 
 
 
 
 
a804ced
 
ac750db
 
 
 
a804ced
1fdb52f
ac750db
 
a804ced
ac750db
 
a804ced
ac750db
 
 
a804ced
ac750db
a804ced
ac750db
a804ced
 
 
ac750db
 
 
a804ced
ac750db
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import re
import nltk
import numpy as np
import gensim
import spacy
import math
from collections import Counter

try:
    from src.clean import clean_license_text
    from src.read_data import read_file
except:
    from clean import clean_license_text
    from read_data import read_file


NEGATION_WEIGHT = 0.2

nlp = spacy.load("en_core_web_sm")

modal_verbs = {
    "can",
    "may",
    "must",
    "shall",
    "will",
    # "could",
    # "might",
    "should",
    "would"
}

neg_modal = {
    "cannot",
    "may not",
    "must not",
    "shall not",
    "will not",
    # "could not",
    # "might not",
    "should not",
    "would not"
}

# TODO Move these structures to another file
license_stopwords = {
    ",",
    "(",
    ")",
    "software",
    "license",
    "work",
    # "copyright",
    "program",
    # "use",
    # "copy",
    "source",
    # "may",
    # "terms",
    "code",
    # "without",
    # "free",
    # "distribute",
    # "rights",
    # "notice",
    # "shall",
    "provided",
    # "permission",
    # "including",
    "version",
    "library",
    # "condition",
    "covered",
    # "must",
    "public",
    # "modify",
    # "distribution",
    # "warranty",
}.union(nlp.Defaults.stop_words) - modal_verbs

negation_words = {
    "no",
    "not",
    "non"
}

# TODO: Consider adding these words to the vocab:
    # no-charge
    # 
    # 
    # 
    # 

verbs = [
    "permit", "copy", "modify", "change", "sell", "reproduce",
    "transfer", "rent", "lease", "assign", "sublet", "distribute",
    "redistribute", "allow", "require", "merge", "publish", "use",
    "include", "grant", "run", "affirm", "propagate", "acknowledge"
]

neg_verbs = [f"not-{verb}" for verb in verbs]

properties_dict = {
    "0.1": [
    ],
    "0.2": ["everyone"],
    "0.3": ["irrevocable"],
    "0.4": [],
    "0.5": [],
    "0.6": [
        "distribution", "redistribution",
        "permission", "modification",
        "copyright",
        "permission",
        "limitation",
        "free", "charge",
        "warranty",
        "term", "terms", "condition",
        "right",
        "sublicense",
        "commercial", "non-commercial",
        "exception"
    ],
    "0.7": verbs + [

    ],
    "0.8": [],
    "0.9": neg_verbs + [],
    "1.0": [],
    "3.0": modal_verbs
}


properties_scores = {
    "0.1": 0.1,
    "0.2": 0.2,
    "0.3": 0.3,
    "0.4": 0.4,
    "0.5": 0.5,
    "0.6": 0.6,
    "0.7": 0.7,
    "0.8": 0.8,
    "0.9": 0.9,
    "1.0": 1.0,
    "3.0": 3.0
}


def lemmatize_tokens(sent):
    # TODO: Docstrings
    """Each word in input sentence is converted to lemma"""
    lemmas = list()

    nlp_sent = [token.lemma_.lower().strip() for token in nlp(sent)]

    for tok_i, token in enumerate(nlp_sent):
        if (token
            and token not in license_stopwords
            and token not in negation_words):
            if tok_i > 0 and nlp_sent[tok_i-1] in negation_words:
                lemmas.append(f"{nlp_sent[tok_i-1]}-{token}")
            elif tok_i > 1 and nlp_sent[tok_i-1] in " -" and nlp_sent[tok_i-2] in negation_words:
                lemmas.append(f"{nlp_sent[tok_i-2]}-{token}")
            else:
                lemmas.append(token)

    return lemmas


def custom_textrank_summarizer(license_text,
                               min_sent_len=3,
                               summary_len=0.3,
                               debug=False):
    """
    TODO: Doctrings
    """
    sent_scores = Counter()

    cleaned_license_text, definitions = clean_license_text(license_text)

    cleaned_license_sentences = re.split('(\n{2,}|\.)', cleaned_license_text)
    cleaned_license_sentences = [
        text.strip() for text in cleaned_license_sentences
        if text.strip() not in ["", ".", "\n", "\n\n"]
    ]

    summary_len = math.ceil(summary_len*len(cleaned_license_sentences))

    if debug:
        print(f"summary length:{summary_len}")
        print(cleaned_license_sentences)

    for sent_i, sent in enumerate(cleaned_license_sentences):

        if sent_i < 0:
            continue

        if len(sent.split()) < min_sent_len:
            continue

        score = 0

        lemmatized_tokens = lemmatize_tokens(sent)

        if debug:
            print("-"*50)
            print(f"\nOriginal Sentence = {sent}")
            print(f"\n{sent_i}. Lemmatized_tokens = {lemmatized_tokens}")

        word_count = Counter([tok for tok in lemmatized_tokens])

        for prop, prop_words in properties_dict.items():
            prop_score = 0

            imp_words = list()

            for prop_i, prop_word in enumerate(prop_words):
                if prop_word in word_count.keys():
                    prop_score += properties_scores[prop] 
                    imp_words.append(prop_word)

            if debug:
                print(prop, "=", imp_words, "=", prop_score)

            score += prop_score

        sent_scores[sent] = score / len(lemmatized_tokens)

        if debug:
            print(f"Sentence score: {sent_scores[sent]}")
            print()

    if debug:
        print(sent_scores)

    sorted_sent_scores = sent_scores.most_common()

    summary = ".\n".join(sent for sent, score in sorted_sent_scores[:summary_len])

    return summary, definitions