File size: 7,647 Bytes
a804ced
fc6772f
 
 
a804ced
fc6772f
 
 
e41b03f
a804ced
e41b03f
 
 
fc6772f
 
e41b03f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc6772f
e41b03f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc6772f
e41b03f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fdb52f
e41b03f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a804ced
e41b03f
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import os
import nltk 
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
import torch
import streamlit as st

from src.doc2vec import inference
from src.abstractive_sum import summarize_text_with_model
from src.textrank import custom_textrank_summarizer, get_labels_for_license
from src.clean import clean_license_text
from src.read_data import read_license_text_data
from src.diff import strikethrough_diff
from src.parameters import help_messages, captions, options

nltk.download('punkt')

if __name__ == "__main__":

    CUSTOM_MODEL_NAME = "utkarshsaboo45/ClearlyDefinedLicenseSummarizer"
    SIMILARITY_THRESHOLD = 0.8

    os.environ["TOKENIZERS_PARALLELISM"] = "false"
    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")

    with st.spinner(captions.LOADING):
        model = AutoModelForSeq2SeqLM.from_pretrained(CUSTOM_MODEL_NAME).to(device)
        tokenizer = AutoTokenizer.from_pretrained(CUSTOM_MODEL_NAME)

    summarization_type = st.sidebar.selectbox(
        captions.SELECT_SUMMARIZATION_TYPE,
        (options.EXTRACTIVE, options.ABSTRACTIVE, options.BOTH),
        help=help_messages.SUMMARIZATION_TYPE
    )

    cleaned_view = None
    exceptions = ""
    definitions = ""

    if summarization_type == options.ABSTRACTIVE:
        st.sidebar.caption(captions.SUMMARY_BY_T5)
        st.sidebar.caption(captions.WARNING_ABSTRACTIVE)
    elif summarization_type == options.EXTRACTIVE:
        st.sidebar.caption(captions.SUMMARY_BY_TEXTRANK)
        summary_len = st.sidebar.slider(
            captions.SUMMARY_LENGTH_PERCENTAGE,
            1,
            100,
            30,
            help=help_messages.SLIDER
        )
        
        summary_view = st.sidebar.selectbox(
            captions.SUMMARY_VIEW, (
                options.DISPLAY_SUMMARY_ONLY,
                options.DISPLAY_HIGHLIGHTED_SUMMARY
            ),
            help=help_messages.SUMMARY_VIEW
        )

        if summary_view == options.DISPLAY_SUMMARY_ONLY:
            st.sidebar.caption(captions.DISPLAY_SUMMARY_ONLY_DESC)
        elif summary_view == options.DISPLAY_HIGHLIGHTED_SUMMARY:
            st.sidebar.caption(captions.DISPLAY_HIGHLIGHTED_SUMMARY_DESC)

        cleaned_view = st.sidebar.selectbox(
            captions.CLEANED_LICENSE_VIEW, (
                options.HIDE_CLEANED_LICENSE,
                options.DISPLAY_CLEANED_LICENSE,
                options.DISPLAY_CLEANED_DIFF
            ),
            help=help_messages.CLEANED_LICENSE_VIEW
        )

        if cleaned_view == options.DISPLAY_CLEANED_LICENSE:
            st.sidebar.caption(captions.CLEANED_LICENSE_ONLY)
        elif cleaned_view == options.DISPLAY_CLEANED_DIFF:
            st.sidebar.caption(captions.CLEANED_LICENSE_WITH_DIFF)
        elif cleaned_view == options.HIDE_CLEANED_LICENSE:
            st.sidebar.caption(captions.HIDE_CLEANED_LICENSE)

    elif summarization_type == options.BOTH:
        st.sidebar.caption(captions.SUMMARY_BY_BOTH)
        st.sidebar.caption(captions.WARNING_BOTH)

    st.title(captions.APP_TITLE)
    st.caption(captions.APP_DISCLAIMER)

    license_input = st.text_area(
        captions.LICENSE_TEXT,
        placeholder=captions.ENTER_LICENSE_CONTENT
    )

    if len(license_input) > 0:
        cleaned_modified_license_text = clean_license_text(license_input)[0]
        with st.spinner(captions.LOADING):
            if summarization_type == options.ABSTRACTIVE:
                summary, definitions = summarize_text_with_model(
                    license_input,
                    model,
                    tokenizer
                )
            if summarization_type == options.EXTRACTIVE:
                if summary_view == options.DISPLAY_SUMMARY_ONLY:
                    summary, definitions, exceptions = custom_textrank_summarizer(
                        license_input,
                        summary_len=summary_len / 100
                    )
                elif summary_view == options.DISPLAY_HIGHLIGHTED_SUMMARY:
                    summary, definitions, exceptions = custom_textrank_summarizer(
                        license_input,
                        summary_len=summary_len / 100,
                        return_summary_only=False
                    )
            if summarization_type == options.BOTH:
                summary, definitions = summarize_text_with_model(
                    license_input,
                    model,
                    tokenizer
                )
                summary, definitions, exceptions = custom_textrank_summarizer(
                    summary,
                    summary_len=1
                )

            st.header(captions.SUMMARY)
            st.markdown(summary, unsafe_allow_html=True)
            
            prediction_scores = inference(license_input)
            top1_result = prediction_scores.loc[0, :]

            st.header(captions.SIMILARITY_INDEX)
            st.caption(captions.SIMILARITY_INDEX_DISCLAIMER)
            st.dataframe(prediction_scores)

            if cleaned_view == options.DISPLAY_CLEANED_DIFF:
                st.header(captions.CLEANED_LICENSE_DIFF)
                if top1_result["Similarity Scores"] > SIMILARITY_THRESHOLD:
                    st.caption("Comparing against the official " + " ".join(
                        top1_result["License"].split("-")
                    ) + " license")

                    top_license_name = top1_result["License"].lower()
                    original_license_text = read_license_text_data(
                        top_license_name
                    )
                    cleaned_original_license_text = clean_license_text(
                        original_license_text
                    )[0]
                    st.markdown(
                        strikethrough_diff(
                            cleaned_original_license_text,
                            cleaned_modified_license_text
                        ),
                        unsafe_allow_html=True
                    )
                else:
                    st.caption(captions.NO_SIMILAR_LICENSE_FOUND)
            elif cleaned_view == options.DISPLAY_CLEANED_LICENSE:
                st.header(captions.CLEANED_LICENSE_TEXT)
                st.write(cleaned_modified_license_text) 

            if st.sidebar.checkbox(
                options.SHOW_LICENSE_PROPERTIES,
                disabled = False if top1_result["Similarity Scores"] > SIMILARITY_THRESHOLD else True,
                value=False,
                help=help_messages.PROPERTIES_CHECKBOX):
                license_properties = get_labels_for_license(top1_result["License"].lower())
                st.header(captions.PROPERTIES)
                st.caption(captions.PROPERTIES_DISCLAIMER)
                st.dataframe(license_properties)
            
            if st.sidebar.checkbox(
                options.SHOW_LICENSE_DEFINITIONS,
                disabled=False if len(definitions.strip()) > 10 else True,
                value=False, 
                help=help_messages.DEFINITIONS_CHECKBOX
            ):
                if len(definitions.strip()) > 10:
                    st.header(captions.DEFINITIONS)
                    st.write(definitions)

            if st.sidebar.checkbox(
                options.SHOW_LICENSE_EXCEPTIONS,
                disabled=False if len(exceptions.strip()) > 10 else True,
                value=False,
                help=help_messages.EXCEPTIONS_CHECKBOX
            ):
                if len(exceptions.strip()) > 10:
                    st.header(captions.EXCEPTIONS)
                    st.write(exceptions)