File size: 8,397 Bytes
e41b03f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
# -*- coding: utf-8 -*-
"""
Created on Tue Jun 14 00:29:28 2022

@author: UTKARSH
"""

import spacy


nlp = spacy.load("en_core_web_sm")

class vocab:
    # We will add extra weight to negation words
    NEGATION_WEIGHT = 0.2

    # Strong modal verbs are given very high weight
    strong_modal_verbs = {
        "must",
        "shall",
    }

    other_modal_verbs = {
        "may",
        "should",
        "would"
    }

    other_relevant_stopwords = {
        "without",
        "however"
    }

    # Stopwords we would not be considering while normalizing
    # We do not need stopwords if we don't normalize, but just in case
    license_stopwords = {
        ",",
        "(",
        ")",
        ".",
        "\"",
        "software",
        "license",
        "work",
        "program",
        "source",
        "code",
        "rights",
        "notice",
        "provided",
        "version",
        "library",
        "covered",
        "public",
        "disclaimer",
        "documentation"
    }.union(
        nlp.Defaults.stop_words
    ) - strong_modal_verbs - other_modal_verbs - other_relevant_stopwords

    negation_words = {
        "no",
        "not",
        "non"
    }    

    # These words will have a high weightage while ranking sentences
    high_imp_verbs = {
        "permit", "copy", "modify", "change", "sell", "reproduce",
        "transfer", "rent", "lease", "assign", "sublet", "distribute",
        "redistribute", "allow", "require", "use"
    }

    low_imp_verbs = {
        "merge", "publish", "include", "grant", "run", "affirm", "propagate",
        "acknowledge", "limit", "retain", "associate"
    }

    high_imp_neg_verbs = {f"not-{verb}" for verb in high_imp_verbs}
    low_imp_neg_verbs = {f"not-{verb}" for verb in low_imp_verbs}

    properties_dict = {
        "0.1": {
            "investigative",
            "contract",
            "contribution"
        },
        "0.2": {
            "everyone",
            "hereby",
            "claim"
        },
        "0.3": {
            "termination", "terminate",
            "meet",
            "tort",
            "files",
            "author",
            "available",
            "apply",
            "material",
            "user"
        },
        "0.4": {
            "liable",
            "contributors",
        },
        "0.5": low_imp_verbs.union({
            "restriction",
            "however",
            "without"
        }),
        "0.6": {
            "distribution", "redistribution",
            "attribution",
            "permission", "modification",
            "copyright",
            "limitation",
            "free", "charge",
            "warranty",
            "term", "terms", "condition",
            "right",
            "sublicense",
            "commercial", "non-commercial",
            "exception",
            "liability",
            "irrevocable"
        },
        "0.7": low_imp_neg_verbs.union({
            "no-charge"
        }),
        "0.8": high_imp_verbs.union({
            "patent"
        }),
        "0.9": {
            ""
        },
        "1.0": high_imp_neg_verbs.union({
            ""
        }),
        "2.0": other_modal_verbs,
        "3.0": strong_modal_verbs
    }

    properties_scores = {
        "0.1": 0.1,
        "0.2": 0.2,
        "0.3": 0.3,
        "0.4": 0.4,
        "0.5": 0.5,
        "0.6": 0.6,
        "0.7": 0.7,
        "0.8": 0.8,
        "0.9": 0.9,
        "1.0": 1.0,
        "2.0": 2.0,
        "3.0": 3.0
    }


class color:
   GREEN = "#03AC13"
   RED = "#D22B2B"
   BLACK = "#000000"
   GRAY = "#AAAAAA"


class captions:

    APP_TITLE = "Clearly Defined: License Summarizer"

    APP_DISCLAIMER = "DISCLAIMER: This app is the result of a Capstone \
        Project and further development is required before productive use."

    LICENSE_TEXT = "License text"

    ENTER_LICENSE_CONTENT = "Enter contents of the license"

    LOADING = "Loading..."
    SUMMARY = "Summary"
    SIMILARITY_INDEX = "Similarity Index"
    SIMILARITY_INDEX_DISCLAIMER = "The following list of licenses are from \
        choosealicense.com and consist of 41 known open source licenses."

    PROPERTIES = "Properties"
    PROPERTIES_DISCLAIMER = "The properties defined below are from \
        choosealicense.com. For more information, visit \
        choosealicense.com/appendix."

    DEFINITIONS = "Definitions"
    EXCEPTIONS = "Exceptions"

    SUMMARY_BY_T5 = "Summary will be generated by a T5 Transformer Model"
    WARNING_ABSTRACTIVE = "WARNING: The results generated by the abstractive \
        summarizer might not be as expected"

    SUMMARY_BY_TEXTRANK = "Summary will be generated by a custom TextRank \
        Algorithm"

    SUMMARY_BY_BOTH = "The License text will be first passed through the \
        custom TextRank algorithm and then passed on to the T5 Transformer \
        Model to generate a summary."

    WARNING_BOTH = "WARNING: The results generated by the abstractive \
        summarizer might not be as expected"

    SUMMARY_LENGTH_PERCENTAGE = "Summary length percentage"

    SELECT_SUMMARIZATION_TYPE = "Select summarization type"

    SUMMARY_VIEW = "Summary View"

    DISPLAY_SUMMARY_ONLY_DESC = "Shows the important sentences from the \
        license"
    DISPLAY_HIGHLIGHTED_SUMMARY_DESC = "Highlights the important sentences in \
        the license"

    CLEANED_LICENSE_ONLY = "Shows the cleaned license text only"
    CLEANED_LICENSE_WITH_DIFF = "Shows the cleaned license text with \
        highlighted diffs"

    HIDE_CLEANED_LICENSE = "Hides the cleaned license text"

    NO_SIMILAR_LICENSE_FOUND = "No similar license found"

    CLEANED_LICENSE_VIEW = "Cleaned License View"
    CLEANED_LICENSE_TEXT = "Cleaned License Text"
    CLEANED_LICENSE_DIFF = "Cleaned License Diff"


class options:
    ABSTRACTIVE = "Abstractive"
    EXTRACTIVE = "Extractive"
    BOTH = "Both"

    DISPLAY_SUMMARY_ONLY = "Display Summary Only"
    DISPLAY_HIGHLIGHTED_SUMMARY = "Display Highlighted Summary"

    HIDE_CLEANED_LICENSE = "Hide Cleaned License"
    DISPLAY_CLEANED_LICENSE = "Display Cleaned License"
    DISPLAY_CLEANED_DIFF = "Display Cleaned License + Diff"

    SHOW_LICENSE_PROPERTIES = "Show license properties"
    SHOW_LICENSE_DEFINITIONS = "Show license definitions"
    SHOW_LICENSE_EXCEPTIONS = "Show license exceptions"


class help_messages:
    SUMMARIZATION_TYPE = f"""Select the type of summarization to perform. \
        "{options.EXTRACTIVE}" would select the most important sentences to \
        generate a summary. "{options.ABSTRACTIVE}" would try and paraphrase \
        the meaning of the license and form a summary. "{options.BOTH}" would \
        first pass the license through "extractive" and then "abstractive" \
        to generate a summary."""

    SLIDER = "Slide to vary the size of the summary. 1 will result in the \
        smallest summary possible, whereas 100 will display the complete \
        (cleaned) license text."

    SUMMARY_VIEW = f""""Select the type of summary view desired. \
        {options.DISPLAY_SUMMARY_ONLY}" will show only the \
        summary text. "{options.DISPLAY_HIGHLIGHTED_SUMMARY}" will show the \
        complete (cleaned) license text with the summary highlighted."""

    CLEANED_LICENSE_VIEW = f""""Select the type of cleaned license view \
        desired. {options.HIDE_CLEANED_LICENSE}" will not show \
        the cleaned license text. "{options.DISPLAY_CLEANED_LICENSE}" will \
        show the cleaned license text. "{options.DISPLAY_CLEANED_DIFF}" will \
        show the cleaned license text and the diff between the input text and \
        the closest matching SPDX license (from the similarity index table)."""

    PROPERTIES_CHECKBOX = "Select this checkbox to view the properties of the \
        license that shares the highest similarity with the input license \
        text. This checkbox would be disabled if no known license crosses the \
        similarity threshold."

    DEFINITIONS_CHECKBOX = "Select this checkbox to view definitions within \
        the license. This checkbox would be disabled if no definitions are \
        found within the license."

    EXCEPTIONS_CHECKBOX = "Select this checkbox to view exceptions within \
        the license. This checkbox would be disabled if no exceptions are \
        found within the license."