Spaces:
Runtime error
Runtime error
File size: 8,397 Bytes
e41b03f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
# -*- coding: utf-8 -*-
"""
Created on Tue Jun 14 00:29:28 2022
@author: UTKARSH
"""
import spacy
nlp = spacy.load("en_core_web_sm")
class vocab:
# We will add extra weight to negation words
NEGATION_WEIGHT = 0.2
# Strong modal verbs are given very high weight
strong_modal_verbs = {
"must",
"shall",
}
other_modal_verbs = {
"may",
"should",
"would"
}
other_relevant_stopwords = {
"without",
"however"
}
# Stopwords we would not be considering while normalizing
# We do not need stopwords if we don't normalize, but just in case
license_stopwords = {
",",
"(",
")",
".",
"\"",
"software",
"license",
"work",
"program",
"source",
"code",
"rights",
"notice",
"provided",
"version",
"library",
"covered",
"public",
"disclaimer",
"documentation"
}.union(
nlp.Defaults.stop_words
) - strong_modal_verbs - other_modal_verbs - other_relevant_stopwords
negation_words = {
"no",
"not",
"non"
}
# These words will have a high weightage while ranking sentences
high_imp_verbs = {
"permit", "copy", "modify", "change", "sell", "reproduce",
"transfer", "rent", "lease", "assign", "sublet", "distribute",
"redistribute", "allow", "require", "use"
}
low_imp_verbs = {
"merge", "publish", "include", "grant", "run", "affirm", "propagate",
"acknowledge", "limit", "retain", "associate"
}
high_imp_neg_verbs = {f"not-{verb}" for verb in high_imp_verbs}
low_imp_neg_verbs = {f"not-{verb}" for verb in low_imp_verbs}
properties_dict = {
"0.1": {
"investigative",
"contract",
"contribution"
},
"0.2": {
"everyone",
"hereby",
"claim"
},
"0.3": {
"termination", "terminate",
"meet",
"tort",
"files",
"author",
"available",
"apply",
"material",
"user"
},
"0.4": {
"liable",
"contributors",
},
"0.5": low_imp_verbs.union({
"restriction",
"however",
"without"
}),
"0.6": {
"distribution", "redistribution",
"attribution",
"permission", "modification",
"copyright",
"limitation",
"free", "charge",
"warranty",
"term", "terms", "condition",
"right",
"sublicense",
"commercial", "non-commercial",
"exception",
"liability",
"irrevocable"
},
"0.7": low_imp_neg_verbs.union({
"no-charge"
}),
"0.8": high_imp_verbs.union({
"patent"
}),
"0.9": {
""
},
"1.0": high_imp_neg_verbs.union({
""
}),
"2.0": other_modal_verbs,
"3.0": strong_modal_verbs
}
properties_scores = {
"0.1": 0.1,
"0.2": 0.2,
"0.3": 0.3,
"0.4": 0.4,
"0.5": 0.5,
"0.6": 0.6,
"0.7": 0.7,
"0.8": 0.8,
"0.9": 0.9,
"1.0": 1.0,
"2.0": 2.0,
"3.0": 3.0
}
class color:
GREEN = "#03AC13"
RED = "#D22B2B"
BLACK = "#000000"
GRAY = "#AAAAAA"
class captions:
APP_TITLE = "Clearly Defined: License Summarizer"
APP_DISCLAIMER = "DISCLAIMER: This app is the result of a Capstone \
Project and further development is required before productive use."
LICENSE_TEXT = "License text"
ENTER_LICENSE_CONTENT = "Enter contents of the license"
LOADING = "Loading..."
SUMMARY = "Summary"
SIMILARITY_INDEX = "Similarity Index"
SIMILARITY_INDEX_DISCLAIMER = "The following list of licenses are from \
choosealicense.com and consist of 41 known open source licenses."
PROPERTIES = "Properties"
PROPERTIES_DISCLAIMER = "The properties defined below are from \
choosealicense.com. For more information, visit \
choosealicense.com/appendix."
DEFINITIONS = "Definitions"
EXCEPTIONS = "Exceptions"
SUMMARY_BY_T5 = "Summary will be generated by a T5 Transformer Model"
WARNING_ABSTRACTIVE = "WARNING: The results generated by the abstractive \
summarizer might not be as expected"
SUMMARY_BY_TEXTRANK = "Summary will be generated by a custom TextRank \
Algorithm"
SUMMARY_BY_BOTH = "The License text will be first passed through the \
custom TextRank algorithm and then passed on to the T5 Transformer \
Model to generate a summary."
WARNING_BOTH = "WARNING: The results generated by the abstractive \
summarizer might not be as expected"
SUMMARY_LENGTH_PERCENTAGE = "Summary length percentage"
SELECT_SUMMARIZATION_TYPE = "Select summarization type"
SUMMARY_VIEW = "Summary View"
DISPLAY_SUMMARY_ONLY_DESC = "Shows the important sentences from the \
license"
DISPLAY_HIGHLIGHTED_SUMMARY_DESC = "Highlights the important sentences in \
the license"
CLEANED_LICENSE_ONLY = "Shows the cleaned license text only"
CLEANED_LICENSE_WITH_DIFF = "Shows the cleaned license text with \
highlighted diffs"
HIDE_CLEANED_LICENSE = "Hides the cleaned license text"
NO_SIMILAR_LICENSE_FOUND = "No similar license found"
CLEANED_LICENSE_VIEW = "Cleaned License View"
CLEANED_LICENSE_TEXT = "Cleaned License Text"
CLEANED_LICENSE_DIFF = "Cleaned License Diff"
class options:
ABSTRACTIVE = "Abstractive"
EXTRACTIVE = "Extractive"
BOTH = "Both"
DISPLAY_SUMMARY_ONLY = "Display Summary Only"
DISPLAY_HIGHLIGHTED_SUMMARY = "Display Highlighted Summary"
HIDE_CLEANED_LICENSE = "Hide Cleaned License"
DISPLAY_CLEANED_LICENSE = "Display Cleaned License"
DISPLAY_CLEANED_DIFF = "Display Cleaned License + Diff"
SHOW_LICENSE_PROPERTIES = "Show license properties"
SHOW_LICENSE_DEFINITIONS = "Show license definitions"
SHOW_LICENSE_EXCEPTIONS = "Show license exceptions"
class help_messages:
SUMMARIZATION_TYPE = f"""Select the type of summarization to perform. \
"{options.EXTRACTIVE}" would select the most important sentences to \
generate a summary. "{options.ABSTRACTIVE}" would try and paraphrase \
the meaning of the license and form a summary. "{options.BOTH}" would \
first pass the license through "extractive" and then "abstractive" \
to generate a summary."""
SLIDER = "Slide to vary the size of the summary. 1 will result in the \
smallest summary possible, whereas 100 will display the complete \
(cleaned) license text."
SUMMARY_VIEW = f""""Select the type of summary view desired. \
{options.DISPLAY_SUMMARY_ONLY}" will show only the \
summary text. "{options.DISPLAY_HIGHLIGHTED_SUMMARY}" will show the \
complete (cleaned) license text with the summary highlighted."""
CLEANED_LICENSE_VIEW = f""""Select the type of cleaned license view \
desired. {options.HIDE_CLEANED_LICENSE}" will not show \
the cleaned license text. "{options.DISPLAY_CLEANED_LICENSE}" will \
show the cleaned license text. "{options.DISPLAY_CLEANED_DIFF}" will \
show the cleaned license text and the diff between the input text and \
the closest matching SPDX license (from the similarity index table)."""
PROPERTIES_CHECKBOX = "Select this checkbox to view the properties of the \
license that shares the highest similarity with the input license \
text. This checkbox would be disabled if no known license crosses the \
similarity threshold."
DEFINITIONS_CHECKBOX = "Select this checkbox to view definitions within \
the license. This checkbox would be disabled if no definitions are \
found within the license."
EXCEPTIONS_CHECKBOX = "Select this checkbox to view exceptions within \
the license. This checkbox would be disabled if no exceptions are \
found within the license."
|