Spaces:
Runtime error
Runtime error
File size: 14,725 Bytes
e41b03f a804ced e41b03f ac750db e41b03f ac750db e41b03f ac750db e41b03f ac750db e41b03f a804ced e41b03f ac750db a804ced ac750db e41b03f ac750db e41b03f ac750db a804ced e41b03f ac750db e41b03f ac750db e41b03f ac750db e41b03f ac750db e41b03f ac750db e41b03f ac750db 1fdb52f ac750db a804ced ac750db e41b03f a804ced ac750db e41b03f a804ced e41b03f ac750db a804ced ac750db a804ced ac750db e41b03f ac750db a804ced e41b03f a804ced ac750db e41b03f a804ced e41b03f ac750db a804ced e41b03f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 |
import pandas as pd
import spacy
import math
from collections import Counter
try:
from src.clean import clean_license_text
from src.parameters import color, vocab
except:
from clean import clean_license_text
from parameters import color, vocab
GOLD_STANDARD_PATH = "../UBC-SAP_gold-corpus/UBC-SAP_capstone_corpus_labels_removed.xlsx"
LABELS_PATH = "data/choosealicense_appendix_labels.csv"
MIN_SENT_LEN = 3
SUMMARY_LEN = 0.3
nlp = spacy.load("en_core_web_sm")
def normalize_sentence_counter(counter):
"""
Normalize sentence scores in the counter between 0 and 3
Parameters
----------
counter : dict
A dictionary of scores with keys as sentence and values as raw scores.
Returns
-------
counter : dict
A dictionary of scores with keys as sentence and values as normalized
scores.
"""
vals = list(counter.values())
if vals:
min_val = min(vals)
max_val = max(vals)
else:
return counter
for sent in counter:
try:
counter[sent] = round(3 * (counter[sent] - min_val) / (max_val - min_val), 3)
except:
counter[sent] = 0
return counter
def sent_tokenize_text(text, debug=False):
"""
Tokenize a license text into sentences
Parameters
----------
text : str
License text to be tokenized into sentences.
debug : bool, optional
Toggles debug mode. The default is False.
Returns
-------
tokenized_sents : list
A list of tokenized sentences.
"""
tokenized_sents = list()
paras = text.split("\n\n")
for para in paras:
for sent in nlp(para).sents:
sent = sent.text.replace("\n", "").strip()
if tokenized_sents and len(tokenized_sents[-1]) <= 30:
tokenized_sents[-1] += f" {sent.strip()}"
else:
tokenized_sents.append(sent.strip())
try:
tokenized_sents[-1] += "\n\n"
except:
pass
if debug:
print("Segmented Sentences:")
print("="*20)
for i, sent in enumerate(tokenized_sents):
print(f"Sent {i+1}")
print("-"*20)
print(sent)
print("-"*50)
print()
return tokenized_sents
def lemmatize_tokens(sent):
"""
Lemmatize tokens into the given sentence
Parameters
----------
sent : str
A sentences whose tokens are to be lemmatized.
Returns
-------
list
A list of lemmatized tokens.
"""
lemmas = list()
nlp_sent = [token.lemma_.lower().strip() for token in nlp(sent)]
for tok_i, token in enumerate(nlp_sent):
if (token
and token not in vocab.license_stopwords
and token not in vocab.negation_words):
if tok_i > 0 and nlp_sent[tok_i-1] in vocab.negation_words:
lemmas.append(f"{nlp_sent[tok_i-1]}-{token}")
elif (tok_i > 1
and nlp_sent[tok_i-1] in " -"
and nlp_sent[tok_i-2] in vocab.negation_words):
lemmas.append(f"{nlp_sent[tok_i-2]}-{token}")
else:
lemmas.append(token)
return [lemma for lemma in lemmas if len(lemma) > 2]
def get_license_summary_scores(license_text,
min_sent_len=MIN_SENT_LEN,
summary_len=SUMMARY_LEN,
summary_in_text_order=True,
return_summary_only=True,
debug=False,
cleaned_license_sentences=None):
"""
Get sentence scores for all the cleaned sentences in a given license_text
along with other extracted details such as definitions, exceptions, etc.
and the cleaned license text itself.
Parameters
----------
license_text : str
License text.
min_sent_len : int, optional
The minimum number of tokens in a sentence for it to be considered.
The default is 3.
summary_len : float, optional
The proportion of length of the expected summary to the length of
license text. The default is 0.3.
summary_in_text_order : bool, optional
Toggle to switch between summary in text order or in descending order
by scores. The default is True.
return_summary_only : bool, optional
Toggle to return just the summary or entire license text with
important sentences highlighted. The default is True.
debug : bool, optional
Toggles debug mode. The default is False.
cleaned_license_sentences : list, optional
A list of cleaned sentences. The default is None.
Returns
-------
sent_scores : dict
A dictionary of sentence scores with keys as tuples of sentence and
sentence id and values as their normalized scores.
cleaned_license_sentences : list
A list of cleaned sentences.
definitions : str
Definitions extracted from license text.
exceptions : str
Exceptions extracted from license text.
summary_len : float
The proportion of length of the expected summary to the length of
license text.
"""
if not cleaned_license_sentences:
cleaned_license_text, definitions, exceptions = clean_license_text(license_text)
cleaned_license_sentences = sent_tokenize_text(cleaned_license_text, debug)
else:
definitions, exceptions = "", ""
sent_scores = Counter()
summary_len = math.ceil(summary_len * len(cleaned_license_sentences))
if debug:
print(f"summary length:{summary_len}")
for sent_i, sent in enumerate(cleaned_license_sentences):
if len(sent.split()) < min_sent_len:
continue
score = 0
lemmatized_tokens = lemmatize_tokens(sent)
if debug:
print("-"*50)
print(f"\nOriginal Sentence = {sent}")
print(f"\n{sent_i}. Lemmatized_tokens = {lemmatized_tokens}")
word_count = Counter([tok for tok in lemmatized_tokens])
for prop, prop_words in vocab.properties_dict.items():
prop_score = 0
imp_words = list()
for prop_word in prop_words:
if prop_word in word_count.keys():
prop_score += vocab.properties_scores[prop]
imp_words.append(prop_word)
if debug:
print(prop, "=", imp_words, "=", prop_score)
score += prop_score
# With normalization
# sent_scores[(sent, sent_i)] = score / len(lemmatized_tokens)
# Without normalization
sent_scores[(sent, sent_i)] = score
if debug:
print(f"Sentence score: {sent_scores[(sent, sent_i)]}")
print()
sent_scores = normalize_sentence_counter(sent_scores)
if debug:
print(sent_scores)
return sent_scores, cleaned_license_sentences, definitions, exceptions, summary_len
def get_sent_scores(license_text,
min_sent_len=MIN_SENT_LEN,
summary_len=SUMMARY_LEN,
summary_in_text_order=True,
return_summary_only=True,
debug=False,
cleaned_license_sentences=None):
"""
Get sentence scores for all the sentences in a given license_text along
with their sentence ids.
Parameters
----------
license_text : str
License text.
min_sent_len : int, optional
The minimum number of tokens in a sentence for it to be considered.
The default is 3.
summary_len : float, optional
The proportion of length of the expected summary to the length of
license text. The default is 0.3.
summary_in_text_order : bool, optional
Toggle to switch between summary in text order or in descending order
by scores. The default is True.
return_summary_only : bool, optional
Toggle to return just the summary or entire license text with
important sentences highlighted. The default is True.
debug : bool, optional
Toggles debug mode. The default is False.
cleaned_license_sentences : list, optional
A list of cleaned sentences. The default is None.
Returns
-------
sent_id_scores : list(tuple)
A list of tuples of sentence id and sentence score.
"""
sent_scores, cleaned_license_sentences, definitions, exceptions, summary_len = get_license_summary_scores(
license_text,
min_sent_len=min_sent_len,
summary_len=summary_len,
summary_in_text_order=summary_in_text_order,
return_summary_only=return_summary_only,
debug=debug,
cleaned_license_sentences=cleaned_license_sentences
)
sent_id_scores = [
(sent_i, score) for (sent_id, sent_i), score in sent_scores.items()
]
return sent_id_scores
def custom_textrank_summarizer(license_text,
min_sent_len=MIN_SENT_LEN,
summary_len=SUMMARY_LEN,
summary_in_text_order=True,
return_summary_only=True,
debug=False):
"""
Returns summary / highlighted summary, definitions and exceptions for a
given license_text.
Parameters
----------
license_text : str
License text.
min_sent_len : int, optional
The minimum number of tokens in a sentence for it to be considered.
The default is 3.
summary_len : float, optional
The proportion of length of the expected summary to the length of
license text. The default is 0.3.
summary_in_text_order : bool, optional
Toggle to switch between summary in text order or in descending order
by scores. The default is True.
return_summary_only : bool, optional
Toggle to return just the summary or entire license text with
important sentences highlighted. The default is True.
debug : bool, optional
Toggles debug mode. The default is False.
Returns
-------
str
Summary or the highlighted license text.
definitions : str
Definitions extracted from license text.
exceptions : str
Exceptions extracted from license text.
"""
sent_scores, cleaned_license_sentences, definitions, exceptions, summary_len = get_license_summary_scores(
license_text,
min_sent_len=min_sent_len,
summary_len=summary_len,
summary_in_text_order=summary_in_text_order,
return_summary_only=return_summary_only,
debug=debug
)
sorted_sent_scores = sent_scores.most_common()[:summary_len]
if summary_in_text_order:
sentences_in_text_order = sorted(sorted_sent_scores, key=lambda x: x[0][1])
summary = "".join(sent.strip(". ") for (sent, sent_i), score in sentences_in_text_order)
selected_sent_ids = set(sent_i for (_, sent_i), score in sentences_in_text_order)
else:
summary = "".join(sent.strip(". ") for (sent, sent_i), score in sorted_sent_scores)
selected_sent_ids = set(sent_i for (_, sent_i), score in sorted_sent_scores)
highlighted_license_text = " ".join(
f"""<mark style="color: {color.BLACK}; background-color:{color.GREEN}">{sent}</mark>"""
if sent_i in selected_sent_ids
else sent
for sent_i, sent in enumerate(cleaned_license_sentences)
)
if debug:
print("="*50)
print("License Text:")
print("-"*30)
print(highlighted_license_text)
print("="*50)
definitions = definitions.strip("\n.") + "."
if return_summary_only:
return summary, definitions, exceptions
else:
return highlighted_license_text, definitions, exceptions
def get_system_scores(attachment_id=None):
"""
Get system sentence scores for all the sentences in all licenses in gold
standard.
Parameters
----------
attachment_id : str, optional
The attachment id of the document for which the sentence scores are to
be calculated. If None, the sentence scores for all the documents will
be returned. The default is None.
Returns
-------
scores_dict : dict
A dictionary of all the scores with keys as the attachment id of a
document and values as a list of tuples of sentence id and scores for
that attachment id.
"""
gold_data = pd.read_excel(GOLD_STANDARD_PATH)
gold_data = gold_data[["attachment_id", "sentence"]]
sent_lists = gold_data.groupby("attachment_id")["sentence"].apply(list)
scores_dict = dict()
if attachment_id:
scores_dict[attachment_id] = get_sent_scores(
"",
summary_len=SUMMARY_LEN,
cleaned_license_sentences=sent_lists[attachment_id]
)
return scores_dict
for attachment_id, cleaned_license_sentences in dict(sent_lists).items():
scores_dict[attachment_id] = get_sent_scores(
"",
summary_len=SUMMARY_LEN,
cleaned_license_sentences=cleaned_license_sentences
)
return scores_dict
def preprocess_properties(cell):
"""
Converts licnse properties to title case and removes hyphens and
underscores.
Parameters
----------
cell : str
A cell string in properties dataframe of a license.
Returns
-------
cell : TYPE
DESCRIPTION.
"""
try:
cell = cell.replace("--", "$")
cell = cell.replace("-", " ")
cell = cell.replace("_", " ")
cell = cell.replace("$", " - ").title()
except:
pass
return cell
def get_labels_for_license(license_id, by_license_id=True):
"""
Gets license properties for a given license_id.
Parameters
----------
license_id : str
License id of the license for which properties are to be returned.
by_license_id : bool, optional
A flag to decide whether we fetch the license properties by license id
or license name. The default is True.
Returns
-------
properties : pandas.DataFrame
Dataframe with properties of the license with id license_id.
"""
index_col = 0 if by_license_id else 1
columns = ["Property", "Label"]
labels_data = pd.read_csv(LABELS_PATH, index_col=index_col)
properties = pd.DataFrame(labels_data.loc[license_id]).reset_index()
properties.columns = columns
properties = properties.applymap(preprocess_properties)
return properties |