import time import os import streamlit as st from langchain_community.vectorstores import FAISS from langchain_community.embeddings import HuggingFaceEmbeddings from langchain.prompts import PromptTemplate from langchain.memory import ConversationBufferWindowMemory from langchain.chains import ConversationalRetrievalChain from langchain_together import Together from footer import footer # Set the Streamlit page configuration and theme st.set_page_config(page_title="BharatLAW", layout="centered") # Display the logo image col1, col2, col3 = st.columns([1, 30, 1]) with col2: st.image("images/banner.png", use_column_width=True) def hide_hamburger_menu(): st.markdown(""" """, unsafe_allow_html=True) hide_hamburger_menu() # Initialize session state for messages and memory if "messages" not in st.session_state: st.session_state.messages = [] if "memory" not in st.session_state: st.session_state.memory = ConversationBufferWindowMemory(k=2, memory_key="chat_history", return_messages=True) @st.cache_resource def load_embeddings(): """Load and cache the embeddings model.""" return HuggingFaceEmbeddings(model_name="law-ai/InLegalBERT") embeddings = load_embeddings() db = FAISS.load_local("ipc_embed_db", embeddings, allow_dangerous_deserialization=True) db_retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 3}) prompt_template = """ [INST] As a legal chatbot specializing in the Indian Penal Code, you are tasked with providing highly accurate and contextually appropriate responses. Ensure your answers meet these criteria: - Respond in a bullet-point format to clearly delineate distinct aspects of the legal query. - Each point should accurately reflect the breadth of the legal provision in question, avoiding over-specificity unless directly relevant to the user's query. - Clarify the general applicability of the legal rules or sections mentioned, highlighting any common misconceptions or frequently misunderstood aspects. - Limit responses to essential information that directly addresses the user's question, providing concise yet comprehensive explanations. - Avoid assuming specific contexts or details not provided in the query, focusing on delivering universally applicable legal interpretations unless otherwise specified. - Conclude with a brief summary that captures the essence of the legal discussion and corrects any common misinterpretations related to the topic. CONTEXT: {context} CHAT HISTORY: {chat_history} QUESTION: {question} ANSWER: - [Detail the first key aspect of the law, ensuring it reflects general application] - [Provide a concise explanation of how the law is typically interpreted or applied] - [Correct a common misconception or clarify a frequently misunderstood aspect] - [Detail any exceptions to the general rule, if applicable] - [Include any additional relevant information that directly relates to the user's query] [INST] """ prompt = PromptTemplate(template=prompt_template, input_variables=['context', 'question', 'chat_history']) api_key = os.getenv('TOGETHER_API_KEY') llm = Together(model="mistralai/Mixtral-8x22B-Instruct-v0.1", temperature=0.5, max_tokens=1024, together_api_key=api_key) qa = ConversationalRetrievalChain.from_llm(llm=llm, memory=st.session_state.memory, retriever=db_retriever, combine_docs_chain_kwargs={'prompt': prompt}) def extract_answer(full_response): """Extracts the answer from the LLM's full response by removing the instructional text.""" answer_start = full_response.find("Response:") if answer_start != -1: answer_start += len("Response:") answer_end = len(full_response) return full_response[answer_start:answer_end].strip() return full_response def reset_conversation(): st.session_state.messages = [] st.session_state.memory.clear() for message in st.session_state.messages: with st.chat_message(message["role"]): st.write(message["content"]) input_prompt = st.chat_input("Say something...") if input_prompt: with st.chat_message("user"): st.markdown(f"**You:** {input_prompt}") st.session_state.messages.append({"role": "user", "content": input_prompt}) with st.chat_message("assistant"): with st.spinner("Thinking 💡..."): result = qa.invoke(input=input_prompt) message_placeholder = st.empty() answer = extract_answer(result["answer"]) # Initialize the response message full_response = "⚠️ **_Gentle reminder: We generally ensure precise information, but do double-check._** \n\n\n" for chunk in answer: # Simulate typing by appending chunks of the response over time full_response += chunk time.sleep(0.02) # Adjust the sleep time to control the "typing" speed message_placeholder.markdown(full_response + " |", unsafe_allow_html=True) st.session_state.messages.append({"role": "assistant", "content": answer}) if st.button('🗑️ Reset All Chat', on_click=reset_conversation): st.experimental_rerun() # Define the CSS to style the footer footer()