Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse files- README.md +35 -12
- app.py +103 -0
- requirements.txt +6 -0
README.md
CHANGED
@@ -1,12 +1,35 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Phi-2 Fine-tuned Chat Assistant
|
2 |
+
|
3 |
+
This Space hosts a fine-tuned version of Microsoft's Phi-2 model using QLoRA (Quantized Low-Rank Adaptation). The model has been trained on the OpenAssistant dataset to improve its conversational abilities.
|
4 |
+
|
5 |
+
## Model Details
|
6 |
+
|
7 |
+
- Base Model: Microsoft Phi-2
|
8 |
+
- Training Method: QLoRA (4-bit quantization)
|
9 |
+
- Dataset: OpenAssistant Conversations Dataset
|
10 |
+
- Fine-tuning Parameters:
|
11 |
+
- LoRA rank: 16
|
12 |
+
- LoRA alpha: 32
|
13 |
+
- Dropout: 0.1
|
14 |
+
- Target modules: q_proj, v_proj
|
15 |
+
|
16 |
+
## Usage
|
17 |
+
|
18 |
+
Simply type your message in the input box and press Enter. The model will generate a response based on your input. You can also try the example prompts provided below the chat interface.
|
19 |
+
|
20 |
+
## Features
|
21 |
+
|
22 |
+
- Interactive chat interface
|
23 |
+
- Real-time response generation
|
24 |
+
- Example prompts for quick testing
|
25 |
+
- Configurable generation parameters (temperature, top-p)
|
26 |
+
|
27 |
+
## Limitations
|
28 |
+
|
29 |
+
- The model may occasionally generate incorrect or inconsistent responses
|
30 |
+
- Response generation time may vary depending on the input length and server load
|
31 |
+
- The model's knowledge is limited to its training data
|
32 |
+
|
33 |
+
## License
|
34 |
+
|
35 |
+
This Space uses the Microsoft Phi-2 model which is subject to its original license. The fine-tuning additions are provided under [Your License].
|
app.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
from peft import PeftModel
|
4 |
+
import torch
|
5 |
+
|
6 |
+
# Model configuration
|
7 |
+
MODEL_PATH = "YOUR_HF_USERNAME/YOUR_MODEL_NAME" # Replace with your model path
|
8 |
+
BASE_MODEL = "microsoft/phi-2"
|
9 |
+
|
10 |
+
class Phi2Chat:
|
11 |
+
def __init__(self):
|
12 |
+
print("Loading tokenizer...")
|
13 |
+
self.tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
|
14 |
+
|
15 |
+
print("Loading base model...")
|
16 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
17 |
+
BASE_MODEL,
|
18 |
+
device_map="auto",
|
19 |
+
torch_dtype=torch.float16
|
20 |
+
)
|
21 |
+
|
22 |
+
print("Loading fine-tuned model...")
|
23 |
+
self.model = PeftModel.from_pretrained(base_model, MODEL_PATH)
|
24 |
+
self.model.eval()
|
25 |
+
|
26 |
+
self.chat_template = """<|im_start|>user
|
27 |
+
{prompt}\n<|im_end|>
|
28 |
+
<|im_start|>assistant
|
29 |
+
"""
|
30 |
+
|
31 |
+
def generate_response(
|
32 |
+
self,
|
33 |
+
prompt: str,
|
34 |
+
max_new_tokens: int = 300,
|
35 |
+
temperature: float = 0.7,
|
36 |
+
top_p: float = 0.9
|
37 |
+
) -> str:
|
38 |
+
formatted_prompt = self.chat_template.format(prompt=prompt)
|
39 |
+
inputs = self.tokenizer(formatted_prompt, return_tensors="pt").to(self.model.device)
|
40 |
+
|
41 |
+
with torch.no_grad():
|
42 |
+
output = self.model.generate(
|
43 |
+
**inputs,
|
44 |
+
max_new_tokens=max_new_tokens,
|
45 |
+
temperature=temperature,
|
46 |
+
top_p=top_p,
|
47 |
+
do_sample=True
|
48 |
+
)
|
49 |
+
|
50 |
+
response = self.tokenizer.decode(output[0], skip_special_tokens=True)
|
51 |
+
# Extract only the assistant's response
|
52 |
+
try:
|
53 |
+
response = response.split("<|im_start|>assistant\n")[-1].split("<|im_end|>")[0].strip()
|
54 |
+
except:
|
55 |
+
response = response.split(prompt)[-1].strip()
|
56 |
+
|
57 |
+
return response
|
58 |
+
|
59 |
+
# Initialize model
|
60 |
+
phi2_chat = Phi2Chat()
|
61 |
+
|
62 |
+
def chat_response(message, history):
|
63 |
+
response = phi2_chat.generate_response(message)
|
64 |
+
return response
|
65 |
+
|
66 |
+
# Create Gradio interface
|
67 |
+
css = """
|
68 |
+
.gradio-container {
|
69 |
+
font-family: 'IBM Plex Sans', sans-serif;
|
70 |
+
}
|
71 |
+
.chat-message {
|
72 |
+
padding: 1rem;
|
73 |
+
border-radius: 0.5rem;
|
74 |
+
margin-bottom: 1rem;
|
75 |
+
background: #f7f7f7;
|
76 |
+
}
|
77 |
+
"""
|
78 |
+
|
79 |
+
with gr.Blocks(css=css) as demo:
|
80 |
+
gr.Markdown("# Phi-2 Fine-tuned Chat Assistant")
|
81 |
+
gr.Markdown("""
|
82 |
+
This is a fine-tuned version of Microsoft's Phi-2 model using QLoRA.
|
83 |
+
The model has been trained on the OpenAssistant dataset to improve its conversational abilities.
|
84 |
+
""")
|
85 |
+
|
86 |
+
chatbot = gr.ChatInterface(
|
87 |
+
chat_response,
|
88 |
+
chatbot=gr.Chatbot(height=400),
|
89 |
+
textbox=gr.Textbox(placeholder="Type your message here...", container=False, scale=7),
|
90 |
+
title="Chat with Phi-2",
|
91 |
+
description="Have a conversation with the fine-tuned Phi-2 model",
|
92 |
+
theme="soft",
|
93 |
+
examples=[
|
94 |
+
"What is quantum computing?",
|
95 |
+
"Write a Python function to find prime numbers",
|
96 |
+
"Explain the concept of machine learning in simple terms"
|
97 |
+
],
|
98 |
+
retry_btn="Retry",
|
99 |
+
undo_btn="Undo",
|
100 |
+
clear_btn="Clear",
|
101 |
+
)
|
102 |
+
|
103 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers>=4.36.0
|
2 |
+
torch>=2.0.0
|
3 |
+
peft>=0.7.0
|
4 |
+
accelerate>=0.25.0
|
5 |
+
bitsandbytes>=0.41.0
|
6 |
+
gradio>=4.0.0
|