File size: 1,842 Bytes
b57fe5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import torch
import logging
from src.utils.helpers import get_batch

@torch.no_grad()
def estimate_loss(model, eval_iters, block_size, batch_size, device):
    out = {}
    model.eval()
    for split in ['train', 'val']:
        losses = torch.zeros(eval_iters)
        for k in range(eval_iters):
            xb, yb = get_batch(split, block_size, batch_size)
            xb, yb = xb.to(device), yb.to(device)
            logits, loss = model(xb, yb)
            losses[k] = loss.item()
        out[split] = losses.mean().item()
    model.train()
    return out

def train(

    model,

    optimizer,

    max_iters,

    eval_interval,

    eval_iters,

    block_size,

    batch_size,

    device,

    checkpoint_path="checkpoints/model.pth"

):
    logger = logging.getLogger(__name__)
    best_val_loss = float('inf')
    
    for iter in range(max_iters):
        # Evaluation
        if iter % eval_interval == 0:
            losses = estimate_loss(model, eval_iters, block_size, batch_size, device)
            logger.info(
                f"Step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}"
            )
            
            # Save best model
            if losses['val'] < best_val_loss:
                best_val_loss = losses['val']
                logger.info(f"Saving model with val loss: {best_val_loss:.4f}")
                torch.save(model, checkpoint_path)

        # Training step
        xb, yb = get_batch('train', block_size, batch_size)
        xb, yb = xb.to(device), yb.to(device)

        # Forward pass
        logits, loss = model(xb, yb)
        
        # Backward pass
        optimizer.zero_grad(set_to_none=True)
        loss.backward()
        optimizer.step()

    # Save final model
    torch.save(model, checkpoint_path)