File size: 1,699 Bytes
b57fe5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import torch
from config.model_config import ModelConfig
from src.data.tokenizer import CharacterTokenizer
from src.model.gpt import GPTModel
from src.training.trainer import train
from src.utils.helpers import generate, setup_logging, prepare_data


def main():
    # Setup logging
    logger = setup_logging()

    # Load config
    config = ModelConfig()

    # Setup device
    device = "cuda" if torch.cuda.is_available() else "cpu"
    logger.info(f"Using device: {device}")

    # Load data
    with open(config.data_path) as f:
        text = f.read()
    tokenizer = CharacterTokenizer(text)

    # Prepare data
    prepare_data(text, tokenizer)

    # Create model
    model = GPTModel(config, tokenizer.vocab_size)
    model = model.to(device)

    # Setup optimizer
    optimizer = torch.optim.AdamW(
        model.parameters(), lr=config.learning_rate, weight_decay=config.weight_decay
    )

    # Train
    train(
        model=model,
        optimizer=optimizer,
        max_iters=config.max_iters,
        eval_interval=config.eval_interval,
        eval_iters=config.eval_iters,
        block_size=config.block_size,
        batch_size=config.batch_size,
        device=device,
        checkpoint_path=config.checkpoint_path,
    )

    # Generate samples
    model = torch.load(config.checkpoint_path, map_location=device)
    for prompt in ["hello", "my name is", "america is"]:
        result = generate(model, tokenizer, prompt, max_tokens=200, device=device)
        logger.info(f"\nPrompt: {prompt}")
        logger.info(f"Generated: {result}")
        logger.info("=" * 40)


if __name__ == "__main__":
    main()