Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
from config.model_config import ModelConfig
|
4 |
+
from src.data.tokenizer import CharacterTokenizer
|
5 |
+
from src.utils.helpers import generate, setup_logging
|
6 |
+
|
7 |
+
# Setup logging
|
8 |
+
logger = setup_logging()
|
9 |
+
|
10 |
+
|
11 |
+
def load_model():
|
12 |
+
config = ModelConfig()
|
13 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
+
logger.info(f"Using device: {device}")
|
15 |
+
|
16 |
+
# Load tokenizer
|
17 |
+
with open(config.data_path) as f:
|
18 |
+
text = f.read()
|
19 |
+
tokenizer = CharacterTokenizer(text)
|
20 |
+
|
21 |
+
# Load model
|
22 |
+
try:
|
23 |
+
model = torch.load(config.checkpoint_path, map_location=device)
|
24 |
+
model.eval()
|
25 |
+
return model, tokenizer, device
|
26 |
+
except Exception as e:
|
27 |
+
logger.error(f"Error loading model: {e}")
|
28 |
+
raise
|
29 |
+
|
30 |
+
|
31 |
+
def generate_text(prompt, max_tokens=200, temperature=0.8):
|
32 |
+
try:
|
33 |
+
result = generate(model, tokenizer, prompt, max_tokens, device)
|
34 |
+
return prompt + result
|
35 |
+
except Exception as e:
|
36 |
+
logger.error(f"Error during generation: {e}")
|
37 |
+
return f"Error: {str(e)}"
|
38 |
+
|
39 |
+
|
40 |
+
# Load model globally
|
41 |
+
try:
|
42 |
+
model, tokenizer, device = load_model()
|
43 |
+
logger.info("Model loaded successfully")
|
44 |
+
except Exception as e:
|
45 |
+
logger.error(f"Failed to load model: {e}")
|
46 |
+
raise
|
47 |
+
|
48 |
+
# Create Gradio interface
|
49 |
+
demo = gr.Interface(
|
50 |
+
fn=generate_text,
|
51 |
+
inputs=[
|
52 |
+
gr.Textbox(label="Enter your prompt", placeholder="Type your prompt here..."),
|
53 |
+
gr.Slider(minimum=10, maximum=1000, value=200, step=10, label="Max Tokens"),
|
54 |
+
],
|
55 |
+
outputs=gr.Textbox(label="Generated Text"),
|
56 |
+
title="Shakespeare GPT",
|
57 |
+
description="Enter a prompt and generate text using a custom GPT model",
|
58 |
+
examples=[
|
59 |
+
["Hello, my name is", 200, 0.8],
|
60 |
+
["Once upon a time", 500, 0.8],
|
61 |
+
["The meaning of life is", 300, 0.8],
|
62 |
+
],
|
63 |
+
)
|
64 |
+
|
65 |
+
if __name__ == "__main__":
|
66 |
+
demo.launch()
|