import torch from torch.utils.data import Dataset, DataLoader class TextDataset(Dataset): def __init__(self, data, block_size): self.data = data self.block_size = block_size def __len__(self): return len(self.data) - self.block_size def __getitem__(self, idx): x = self.data[idx:idx + self.block_size] y = self.data[idx + 1:idx + self.block_size + 1] return x, y def create_dataloaders(text, tokenizer, config, device): data = torch.tensor(tokenizer.encode(text), dtype=torch.long) n = int(0.9 * len(data)) train_data = data[:n] val_data = data[n:] train_dataset = TextDataset(train_data, config.block_size) val_dataset = TextDataset(val_data, config.block_size) train_loader = DataLoader( train_dataset, batch_size=config.batch_size, shuffle=True, pin_memory=True ) val_loader = DataLoader( val_dataset, batch_size=config.batch_size, shuffle=False, pin_memory=True ) return train_loader, val_loader