File size: 21,115 Bytes
7f2d78e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
from torch.utils.data import DataLoader, Subset
from torchvision import datasets, transforms
import torch.nn.functional as F
import os
from tqdm import tqdm
import random
import numpy as np
from torch.utils.tensorboard import SummaryWriter
import json
from datetime import timedelta, datetime
import logging
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP
import socket
import argparse
import math


# Set random seeds for reproducibility
def set_seed(seed=42):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)


# Training configuration
class Config:
    num_epochs = 150
    batch_size = 512
    learning_rate = 0.1
    momentum = 0.9
    weight_decay = 1e-4
    num_workers = 16
    subset_size = None
    print_freq = 100

    # Add gradient accumulation steps if needed
    accum_iter = 1  # Can be increased if memory allows

    # Add mixed precision training parameters
    use_amp = True  # Enable automatic mixed precision


class AverageMeter(object):
    """Computes and stores the average and current value"""

    def __init__(self):
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count


def get_data_loaders(subset_size=None, distributed=False, world_size=None, rank=None):
    # ImageNet normalization values
    normalize = transforms.Normalize(
        mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
    )

    # Modified data augmentation for training
    train_transform = transforms.Compose(
        [
            transforms.RandomResizedCrop(224),  # Removed interpolation and antialias
            transforms.RandomHorizontalFlip(),
            transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4),
            transforms.RandomAffine(degrees=15, translate=(0.1, 0.1), scale=(0.9, 1.1)),
            transforms.ToTensor(),
            normalize,
            transforms.RandomErasing(p=0.5),  # Moved after ToTensor
        ]
    )

    # Modified transform for validation
    val_transform = transforms.Compose(
        [
            transforms.Resize(256),  # Removed antialias
            transforms.CenterCrop(224),
            transforms.ToTensor(),
            normalize,
        ]
    )

    training_folder_name = "ILSVRC/Data/CLS-LOC/train"
    val_folder_name = "ILSVRC/Data/CLS-LOC/val"

    train_dataset = torchvision.datasets.ImageFolder(
        root=training_folder_name, transform=train_transform
    )

    val_dataset = torchvision.datasets.ImageFolder(
        root=val_folder_name, transform=val_transform
    )

    # Create subset for initial testing
    if subset_size:
        train_indices = torch.randperm(len(train_dataset))[:subset_size]
        val_indices = torch.randperm(len(val_dataset))[: subset_size // 10]
        train_dataset = Subset(train_dataset, train_indices)
        val_dataset = Subset(val_dataset, val_indices)

    # Create samplers for distributed training
    train_sampler = None
    val_sampler = None

    if distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(
            train_dataset, num_replicas=world_size, rank=rank
        )
        val_sampler = torch.utils.data.distributed.DistributedSampler(
            val_dataset, num_replicas=world_size, rank=rank
        )

    # Create data loaders
    train_loader = DataLoader(
        train_dataset,
        batch_size=Config.batch_size,
        shuffle=(train_sampler is None),
        num_workers=Config.num_workers,
        pin_memory=True,
        sampler=train_sampler,
        persistent_workers=True,
        prefetch_factor=2,
    )

    val_loader = DataLoader(
        val_dataset,
        batch_size=Config.batch_size,
        shuffle=False,
        num_workers=Config.num_workers,
        pin_memory=True,
        sampler=val_sampler,
        persistent_workers=True,
        prefetch_factor=2,
    )

    return train_loader, val_loader, train_sampler


def train_epoch(model, train_loader, criterion, optimizer, epoch, device):
    epoch_start_time = datetime.now()
    model.train()
    running_loss = 0.0
    correct = 0
    total = 0

    # Create GradScaler for mixed precision training
    scaler = torch.cuda.amp.GradScaler(enabled=Config.use_amp)

    pbar = tqdm(train_loader, desc=f"Epoch {epoch}")
    optimizer.zero_grad()

    for i, data in enumerate(pbar):
        try:
            images, targets = data
            images, targets = images.to(device), targets.to(device)

            # Mixed precision training
            with torch.cuda.amp.autocast(enabled=Config.use_amp):
                outputs = model(images)
                loss = criterion(outputs, targets)
                loss = (
                    loss / Config.accum_iter
                )  # Normalize loss for gradient accumulation

            # Backward pass with gradient scaling
            scaler.scale(loss).backward()

            # Gradient accumulation
            if ((i + 1) % Config.accum_iter == 0) or (i + 1 == len(train_loader)):
                scaler.unscale_(optimizer)
                torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
                scaler.step(optimizer)
                scaler.update()
                optimizer.zero_grad()

            running_loss += loss.item() * Config.accum_iter
            _, predicted = outputs.max(1)
            total += targets.size(0)
            correct += predicted.eq(targets).sum().item()

            if i % Config.print_freq == 0:
                accuracy = 100.0 * correct / total
                pbar.set_postfix(
                    {
                        "loss": running_loss / (i + 1),
                        "acc": f"{accuracy:.2f}%",
                        "lr": optimizer.param_groups[0]["lr"],
                    }
                )
        except Exception as e:
            print(f"Error in batch {i}: {str(e)}")
            continue

    # Calculate epoch time and return metrics
    epoch_time = datetime.now() - epoch_start_time
    epoch_metrics = {
        "time": epoch_time,
        "loss": running_loss / len(train_loader),
        "accuracy": 100.0 * correct / total,
    }
    return epoch_metrics


def validate(model, val_loader, criterion, device):
    model.eval()
    top1 = AverageMeter()
    top5 = AverageMeter()
    losses = AverageMeter()

    with torch.no_grad(), torch.cuda.amp.autocast(enabled=Config.use_amp):
        for images, targets in tqdm(val_loader, desc="Validating"):
            images, targets = images.to(device), targets.to(device)
            output = model(images)
            loss = criterion(output, targets)

            # Compute top-1 and top-5 accuracy
            maxk = max((1, 5))
            batch_size = targets.size(0)

            _, pred = output.topk(maxk, 1, True, True)
            pred = pred.t()
            correct = pred.eq(targets.view(1, -1).expand_as(pred))

            # Top-1 accuracy
            top1_acc = correct[0].float().sum() * 100.0 / batch_size
            top1.update(top1_acc.item(), batch_size)

            # Top-5 accuracy
            top5_acc = correct[:5].float().sum() * 100.0 / batch_size
            top5.update(top5_acc.item(), batch_size)

            losses.update(loss.item(), batch_size)

    return top1.avg, top5.avg, losses.avg


# Add ResNet building blocks
class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, in_channels, out_channels, stride=1):
        super().__init__()
        self.conv1 = nn.Conv2d(
            in_channels,
            out_channels,
            kernel_size=3,
            stride=stride,
            padding=1,
            bias=False,
        )
        self.bn1 = nn.BatchNorm2d(out_channels)
        self.conv2 = nn.Conv2d(
            out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False
        )
        self.bn2 = nn.BatchNorm2d(out_channels)

        self.shortcut = nn.Sequential()
        if stride != 1 or in_channels != out_channels:
            self.shortcut = nn.Sequential(
                nn.Conv2d(
                    in_channels, out_channels, kernel_size=1, stride=stride, bias=False
                ),
                nn.BatchNorm2d(out_channels),
            )

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.bn2(self.conv2(out))
        out += self.shortcut(x)
        out = F.relu(out)
        return out


class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, in_channels, out_channels, stride=1):
        super().__init__()
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(out_channels)
        self.conv2 = nn.Conv2d(
            out_channels,
            out_channels,
            kernel_size=3,
            stride=stride,
            padding=1,
            bias=False,
        )
        self.bn2 = nn.BatchNorm2d(out_channels)
        self.conv3 = nn.Conv2d(
            out_channels, out_channels * self.expansion, kernel_size=1, bias=False
        )
        self.bn3 = nn.BatchNorm2d(out_channels * self.expansion)

        self.shortcut = nn.Sequential()
        if stride != 1 or in_channels != out_channels * self.expansion:
            self.shortcut = nn.Sequential(
                nn.Conv2d(
                    in_channels,
                    out_channels * self.expansion,
                    kernel_size=1,
                    stride=stride,
                    bias=False,
                ),
                nn.BatchNorm2d(out_channels * self.expansion),
            )

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = F.relu(self.bn2(self.conv2(out)))
        out = self.bn3(self.conv3(out))
        out += self.shortcut(x)
        out = F.relu(out)
        return out


class ResNet(nn.Module):
    def __init__(self, block, num_blocks, num_classes=1000):
        super().__init__()
        self.in_channels = 64

        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
        self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
        self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
        self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)

        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        # Initialize weights
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

    def _make_layer(self, block, out_channels, num_blocks, stride):
        strides = [stride] + [1] * (num_blocks - 1)
        layers = []
        for stride in strides:
            layers.append(block(self.in_channels, out_channels, stride))
            self.in_channels = out_channels * block.expansion
        return nn.Sequential(*layers)

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.maxpool(out)

        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.layer4(out)

        out = self.avgpool(out)
        out = torch.flatten(out, 1)
        out = self.fc(out)
        return out


# Replace the model creation in main() with this:
def create_resnet50():
    return ResNet(Bottleneck, [3, 4, 6, 3])


# Add logging setup function
def setup_logging(log_dir):
    # Create local log directory
    os.makedirs(log_dir, exist_ok=True)
    logging.basicConfig(
        level=logging.INFO,
        format="%(asctime)s - %(levelname)s - %(message)s",
        handlers=[
            logging.FileHandler(os.path.join(log_dir, "training.log")),
            logging.StreamHandler(),
        ],
    )
    return logging.getLogger(__name__)


# Add distributed training setup
def setup_distributed():
    parser = argparse.ArgumentParser()
    parser.add_argument("--nodes", type=int, default=1)
    args = parser.parse_args()

    if "LOCAL_RANK" not in os.environ:
        os.environ["LOCAL_RANK"] = "-1"

    args.local_rank = int(os.environ["LOCAL_RANK"])

    if "WORLD_SIZE" in os.environ:
        args.world_size = int(os.environ["WORLD_SIZE"])
    else:
        args.world_size = args.nodes

    return args


# Add this function to get dataset statistics
def get_dataset_stats(train_loader, val_loader):
    stats = {
        "num_train_samples": len(train_loader.dataset),
        "num_val_samples": len(val_loader.dataset),
        "num_classes": len(train_loader.dataset.dataset.classes)
        if hasattr(train_loader.dataset, "dataset")
        else len(train_loader.dataset.classes),
        "batch_size": train_loader.batch_size,
        "num_train_batches": len(train_loader),
        "num_val_batches": len(val_loader),
        "device_count": torch.cuda.device_count(),
        "max_epochs": Config.num_epochs,
        "learning_rate": Config.learning_rate,
        "weight_decay": Config.weight_decay,
        "num_workers": Config.num_workers,
    }

    # Get class distribution
    if hasattr(train_loader.dataset, "dataset"):
        # For subset dataset
        classes = train_loader.dataset.dataset.classes
        class_to_idx = train_loader.dataset.dataset.class_to_idx
    else:
        # For full dataset
        classes = train_loader.dataset.classes
        class_to_idx = train_loader.dataset.class_to_idx

    stats["classes"] = classes
    stats["class_to_idx"] = class_to_idx

    return stats


# Modify the main function to support distributed training
def main():
    start_time = datetime.now()
    args = setup_distributed()

    # Setup distributed training
    if args.local_rank != -1:
        torch.cuda.set_device(args.local_rank)
        dist.init_process_group(
            backend="nccl",
            init_method="env://",  # Use environment variables for initialization
        )

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    # Setup logging and tensorboard
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    log_dir = f"runs/resnet50_{timestamp}"
    if args.local_rank <= 0:  # Only create directories for master process
        os.makedirs(log_dir, exist_ok=True)
        writer = SummaryWriter(log_dir)
        logger = setup_logging(log_dir)
        logger.info(f"Starting training on {socket.gethostname()}")
        logger.info(f"Available GPUs: {torch.cuda.device_count()}")
        logger.info(f"Training started at: {start_time}")

    set_seed()

    # Create model
    model = create_resnet50()
    if args.local_rank != -1:
        model = DDP(model.to(device), device_ids=[args.local_rank])
    else:
        model = torch.nn.DataParallel(model).to(device)

    # Rest of your training setup
    criterion = nn.CrossEntropyLoss(label_smoothing=0.1)
    optimizer = optim.SGD(
        model.parameters(),
        lr=Config.learning_rate,
        momentum=Config.momentum,
        weight_decay=Config.weight_decay,
        nesterov=True,
    )

    # Cosine annealing with warmup
    warmup_epochs = 5

    def warmup_lr_scheduler(epoch):
        if epoch < warmup_epochs:
            return epoch / warmup_epochs
        return 0.5 * (
            1
            + math.cos(
                math.pi * (epoch - warmup_epochs) / (Config.num_epochs - warmup_epochs)
            )
        )

    scheduler = optim.lr_scheduler.LambdaLR(optimizer, warmup_lr_scheduler)

    # Get data loaders with distributed sampler
    train_loader, val_loader, train_sampler = get_data_loaders(
        subset_size=Config.subset_size,
        distributed=(args.local_rank != -1),
        world_size=dist.get_world_size() if args.local_rank != -1 else None,
        rank=args.local_rank if args.local_rank != -1 else None,
    )

    # Log dataset statistics
    if args.local_rank <= 0:
        dataset_stats = get_dataset_stats(train_loader, val_loader)
        logger.info("Dataset Statistics:")
        logger.info(f"Training samples: {dataset_stats['num_train_samples']}")
        logger.info(f"Validation samples: {dataset_stats['num_val_samples']}")
        logger.info(f"Number of classes: {dataset_stats['num_classes']}")
        logger.info(f"Batch size: {dataset_stats['batch_size']}")
        logger.info(f"Training batches per epoch: {dataset_stats['num_train_batches']}")
        logger.info(f"Validation batches per epoch: {dataset_stats['num_val_batches']}")

    best_acc = 0
    # Training loop
    total_training_time = timedelta()
    # Training loop
    for epoch in range(Config.num_epochs):
        if args.local_rank <= 0:
            logger.info(f"Starting epoch {epoch}")

        if train_sampler is not None:
            train_sampler.set_epoch(epoch)

        # Train for one epoch and get metrics
        train_metrics = train_epoch(
            model, train_loader, criterion, optimizer, epoch, device
        )
        total_training_time += train_metrics["time"]

        # train_epoch(model, train_loader, criterion, optimizer, epoch, device)

        if args.local_rank <= 0:  # Only validate on master process
            # Log training metrics
            logger.info(
                f"Epoch {epoch} completed in {train_metrics['time']}, "
                f"Training Loss: {train_metrics['loss']:.4f}, "
                f"Training Accuracy: {train_metrics['accuracy']:.2f}%"
            )

            top1_acc, top5_acc, val_loss = validate(
                model, val_loader, criterion, device
            )

            # Log validation metrics
            logger.info(
                f"Validation metrics - "
                f"Top1 Acc: {top1_acc:.2f}%, "
                f"Top5 Acc: {top5_acc:.2f}%, "
                f"Val Loss: {val_loss:.4f}"
            )

            # Log cumulative time
            logger.info(f"Total training time so far: {total_training_time}")

            # Log to tensorboard
            writer.add_scalar("Training/Loss", train_metrics["loss"], epoch)
            writer.add_scalar("Training/Accuracy", train_metrics["accuracy"], epoch)
            writer.add_scalar(
                "Training/Time", train_metrics["time"].total_seconds(), epoch
            )
            writer.add_scalar("Validation/Top1_Accuracy", top1_acc, epoch)
            writer.add_scalar("Validation/Top5_Accuracy", top5_acc, epoch)
            writer.add_scalar("Validation/Loss", val_loss, epoch)

            is_best = top1_acc > best_acc
            best_acc = max(top1_acc, best_acc)

            # Save checkpoint
            torch.save(
                {
                    "epoch": epoch,
                    "model_state_dict": model.state_dict(),
                    "optimizer_state_dict": optimizer.state_dict(),
                    "scheduler_state_dict": scheduler.state_dict(),
                    "best_acc": best_acc,
                    "top1_accuracy": top1_acc,
                    "top5_accuracy": top5_acc,
                },
                os.path.join(log_dir, "best_model.pth"),
            )

            if top1_acc >= 70.0:
                logger.info(
                    f"\nTarget accuracy of 70% achieved! Current accuracy: {top1_acc:.2f}%"
                )
                torch.save(
                    {
                        "epoch": epoch,
                        "model_state_dict": model.state_dict(),
                        "optimizer_state_dict": optimizer.state_dict(),
                        "best_acc": best_acc,
                        "top1_accuracy": top1_acc,
                        "top5_accuracy": top5_acc,
                    },
                    os.path.join(log_dir, "target_achieved_model.pth"),
                )
                # break

        # Save metrics after each epoch
        # with open(os.path.join(log_dir, "metrics.json"), "w") as f:
        #     json.dump(train_metrics, f, indent=4)

        scheduler.step()

    if args.local_rank <= 0:
        end_time = datetime.now()
        training_time = end_time - start_time
        writer.close()
        logger.info("\nTraining completed!")
        logger.info(f"Total training time: {training_time}")
        logger.info(f"Best Top-1 Accuracy: {train_metrics['best_top1_acc']:.2f}%")
        logger.info(
            f"Target accuracy of 70% {'achieved' if train_metrics['best_top1_acc'] >= 70.0 else 'not achieved'}"
        )


if __name__ == "__main__":
    main()