Spaces:
Running
on
T4
Running
on
T4
Prasanna Sridhar
commited on
Commit
·
aedd89b
1
Parent(s):
2f1d1a1
Refactor app.py - extract reusable functions
Browse files- .gitignore +2 -2
- app.py +116 -148
- requirements.txt +2 -0
.gitignore
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
env/
|
3 |
__pycache__
|
4 |
.python-version
|
5 |
-
|
6 |
|
7 |
# vim
|
8 |
-
*.sw[op]
|
|
|
2 |
env/
|
3 |
__pycache__
|
4 |
.python-version
|
5 |
+
*.py[od]
|
6 |
|
7 |
# vim
|
8 |
+
*.sw[op]
|
app.py
CHANGED
@@ -14,11 +14,6 @@ import matplotlib.pyplot as plt
|
|
14 |
import io
|
15 |
from enum import Enum
|
16 |
import os
|
17 |
-
import subprocess
|
18 |
-
from subprocess import call
|
19 |
-
import shlex
|
20 |
-
import shutil
|
21 |
-
#os.environ["GRADIO_TEMP_DIR"] = os.path.join(os.getcwd(), "tmp")
|
22 |
cwd = os.getcwd()
|
23 |
# Suppress warnings to avoid overflowing the log.
|
24 |
import warnings
|
@@ -145,22 +140,6 @@ def build_model_and_transforms(args):
|
|
145 |
|
146 |
return model, data_transform
|
147 |
|
148 |
-
examples = [
|
149 |
-
["strawberry.jpg", "strawberry", {"image": "strawberry.jpg"}],
|
150 |
-
["strawberry.jpg", "blueberry", {"image": "strawberry.jpg"}],
|
151 |
-
["bird-1.JPG", "bird", {"image": "bird-2.JPG"}],
|
152 |
-
["fish.jpg", "fish", {"image": "fish.jpg"}],
|
153 |
-
["women.jpg", "girl", {"image": "women.jpg"}],
|
154 |
-
["women.jpg", "boy", {"image": "women.jpg"}],
|
155 |
-
["balloon.jpg", "hot air balloon", {"image": "balloon.jpg"}],
|
156 |
-
["deer.jpg", "deer", {"image": "deer.jpg"}],
|
157 |
-
["apple.jpg", "apple", {"image": "apple.jpg"}],
|
158 |
-
["egg.jpg", "egg", {"image": "egg.jpg"}],
|
159 |
-
["stamp.jpg", "stamp", {"image": "stamp.jpg"}],
|
160 |
-
["green-pea.jpg", "green pea", {"image": "green-pea.jpg"}],
|
161 |
-
["lego.jpg", "lego", {"image": "lego.jpg"}]
|
162 |
-
]
|
163 |
-
|
164 |
# APP:
|
165 |
def get_box_inputs(prompts):
|
166 |
box_inputs = []
|
@@ -197,6 +176,107 @@ def get_ind_to_filter(text, word_ids, keywords):
|
|
197 |
|
198 |
return inds_to_filter
|
199 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
if __name__ == '__main__':
|
201 |
|
202 |
parser = argparse.ArgumentParser("Counting Application", parents=[get_args_parser()])
|
@@ -207,54 +287,15 @@ if __name__ == '__main__':
|
|
207 |
|
208 |
@spaces.GPU(duration=120)
|
209 |
def count(image, text, prompts, state, device):
|
210 |
-
|
211 |
-
keywords = "" # do not handle this for now
|
212 |
-
|
213 |
-
# Handle no prompt case.
|
214 |
if prompts is None:
|
215 |
prompts = {"image": image, "points": []}
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
input_image_exemplars, exemplars = transform(prompts["image"], {"exemplars": torch.tensor(exemplars)})
|
221 |
-
input_image_exemplars = input_image_exemplars.unsqueeze(0).to(device)
|
222 |
-
exemplars = [exemplars["exemplars"].to(device)]
|
223 |
-
|
224 |
-
with torch.no_grad():
|
225 |
-
model_output = model(
|
226 |
-
nested_tensor_from_tensor_list(input_image),
|
227 |
-
nested_tensor_from_tensor_list(input_image_exemplars),
|
228 |
-
exemplars,
|
229 |
-
[torch.tensor([0]).to(device) for _ in range(len(input_image))],
|
230 |
-
captions=[text + " ."] * len(input_image),
|
231 |
-
)
|
232 |
|
233 |
-
|
234 |
-
|
235 |
-
boxes = model_output["pred_boxes"][0]
|
236 |
-
if len(keywords.strip()) > 0:
|
237 |
-
box_mask = (logits > CONF_THRESH).sum(dim=-1) == len(ind_to_filter)
|
238 |
-
else:
|
239 |
-
box_mask = logits.max(dim=-1).values > CONF_THRESH
|
240 |
-
logits = logits[box_mask, :].cpu().numpy()
|
241 |
-
boxes = boxes[box_mask, :].cpu().numpy()
|
242 |
-
|
243 |
-
# Plot results.
|
244 |
-
(w, h) = image.size
|
245 |
-
det_map = np.zeros((h, w))
|
246 |
-
det_map[(h * boxes[:, 1]).astype(int), (w * boxes[:, 0]).astype(int)] = 1
|
247 |
-
det_map = ndimage.gaussian_filter(
|
248 |
-
det_map, sigma=(w // 200, w // 200), order=0
|
249 |
-
)
|
250 |
-
plt.imshow(image)
|
251 |
-
plt.imshow(det_map[None, :].transpose(1, 2, 0), 'jet', interpolation='none', alpha=0.7)
|
252 |
-
plt.axis('off')
|
253 |
-
img_buf = io.BytesIO()
|
254 |
-
plt.savefig(img_buf, format='png', bbox_inches='tight')
|
255 |
-
plt.close()
|
256 |
-
|
257 |
-
output_img = Image.open(img_buf)
|
258 |
|
259 |
if AppSteps.TEXT_AND_EXEMPLARS not in state:
|
260 |
exemplar_image = ImagePrompter(type='pil', label='Visual Exemplar Image', value=prompts, interactive=True, visible=True)
|
@@ -274,92 +315,19 @@ if __name__ == '__main__':
|
|
274 |
main_instructions_comp = gr.Markdown(visible=True)
|
275 |
step_3 = gr.Tab(visible=True)
|
276 |
|
277 |
-
out_label = "
|
278 |
-
if len(text.strip()) > 0:
|
279 |
-
out_label += " text"
|
280 |
-
if exemplars[0].size()[0] == 1:
|
281 |
-
out_label += " and " + str(exemplars[0].size()[0]) + " visual exemplar."
|
282 |
-
elif exemplars[0].size()[0] > 1:
|
283 |
-
out_label += " and " + str(exemplars[0].size()[0]) + " visual exemplars."
|
284 |
-
else:
|
285 |
-
out_label += "."
|
286 |
-
elif exemplars[0].size()[0] > 0:
|
287 |
-
if exemplars[0].size()[0] == 1:
|
288 |
-
out_label += " " + str(exemplars[0].size()[0]) + " visual exemplar."
|
289 |
-
else:
|
290 |
-
out_label += " " + str(exemplars[0].size()[0]) + " visual exemplars."
|
291 |
-
else:
|
292 |
-
out_label = "Nothing specified to detect."
|
293 |
-
|
294 |
-
return (gr.Image(output_img, visible=True, label=out_label, show_label=True), gr.Number(label="Predicted Count", visible=True, value=boxes.shape[0]), new_submit_btn, gr.Tab(visible=True), step_3, state)
|
295 |
|
296 |
@spaces.GPU
|
297 |
def count_main(image, text, prompts, device):
|
298 |
-
keywords = "" # do not handle this for now
|
299 |
-
# Handle no prompt case.
|
300 |
if prompts is None:
|
301 |
prompts = {"image": image, "points": []}
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
input_image_exemplars = input_image_exemplars.unsqueeze(0).to(device)
|
308 |
-
exemplars = [exemplars["exemplars"].to(device)]
|
309 |
-
|
310 |
-
with torch.no_grad():
|
311 |
-
model_output = model(
|
312 |
-
nested_tensor_from_tensor_list(input_image),
|
313 |
-
nested_tensor_from_tensor_list(input_image_exemplars),
|
314 |
-
exemplars,
|
315 |
-
[torch.tensor([0]).to(device) for _ in range(len(input_image))],
|
316 |
-
captions=[text + " ."] * len(input_image),
|
317 |
-
)
|
318 |
-
|
319 |
-
ind_to_filter = get_ind_to_filter(text, model_output["token"][0].word_ids, keywords)
|
320 |
-
logits = model_output["pred_logits"].sigmoid()[0][:, ind_to_filter]
|
321 |
-
boxes = model_output["pred_boxes"][0]
|
322 |
-
if len(keywords.strip()) > 0:
|
323 |
-
box_mask = (logits > CONF_THRESH).sum(dim=-1) == len(ind_to_filter)
|
324 |
-
else:
|
325 |
-
box_mask = logits.max(dim=-1).values > CONF_THRESH
|
326 |
-
logits = logits[box_mask, :].cpu().numpy()
|
327 |
-
boxes = boxes[box_mask, :].cpu().numpy()
|
328 |
-
|
329 |
-
# Plot results.
|
330 |
-
(w, h) = image.size
|
331 |
-
det_map = np.zeros((h, w))
|
332 |
-
det_map[(h * boxes[:, 1]).astype(int), (w * boxes[:, 0]).astype(int)] = 1
|
333 |
-
det_map = ndimage.gaussian_filter(
|
334 |
-
det_map, sigma=(w // 200, w // 200), order=0
|
335 |
-
)
|
336 |
-
plt.imshow(image)
|
337 |
-
plt.imshow(det_map[None, :].transpose(1, 2, 0), 'jet', interpolation='none', alpha=0.7)
|
338 |
-
plt.axis('off')
|
339 |
-
img_buf = io.BytesIO()
|
340 |
-
plt.savefig(img_buf, format='png', bbox_inches='tight')
|
341 |
-
plt.close()
|
342 |
-
|
343 |
-
output_img = Image.open(img_buf)
|
344 |
-
|
345 |
-
out_label = "Detected instances predicted with"
|
346 |
-
if len(text.strip()) > 0:
|
347 |
-
out_label += " text"
|
348 |
-
if exemplars[0].size()[0] == 1:
|
349 |
-
out_label += " and " + str(exemplars[0].size()[0]) + " visual exemplar."
|
350 |
-
elif exemplars[0].size()[0] > 1:
|
351 |
-
out_label += " and " + str(exemplars[0].size()[0]) + " visual exemplars."
|
352 |
-
else:
|
353 |
-
out_label += "."
|
354 |
-
elif exemplars[0].size()[0] > 0:
|
355 |
-
if exemplars[0].size()[0] == 1:
|
356 |
-
out_label += " " + str(exemplars[0].size()[0]) + " visual exemplar."
|
357 |
-
else:
|
358 |
-
out_label += " " + str(exemplars[0].size()[0]) + " visual exemplars."
|
359 |
-
else:
|
360 |
-
out_label = "Nothing specified to detect."
|
361 |
|
362 |
-
return (gr.Image(output_img, visible=True, label=out_label, show_label=True), gr.Number(label="Predicted Count", visible=True, value=
|
363 |
|
364 |
def remove_label(image):
|
365 |
return gr.Image(show_label=False)
|
@@ -401,12 +369,12 @@ if __name__ == '__main__':
|
|
401 |
with gr.Accordion("Open for Further Information", open=False):
|
402 |
gr.Markdown(exemplar_img_drawing_instructions_part_2)
|
403 |
with gr.Tab("Step 1", visible=True) as step_1:
|
404 |
-
input_image = gr.Image(type='pil', label='Input Image', show_label='True', value="strawberry.jpg", interactive=False
|
405 |
gr.Markdown('# Click "Count" to count the strawberries.')
|
406 |
|
407 |
with gr.Column():
|
408 |
with gr.Tab("Output Image"):
|
409 |
-
detected_instances = gr.Image(label="Detected Instances", show_label='True', interactive=False, visible=True
|
410 |
|
411 |
with gr.Row():
|
412 |
input_text = gr.Textbox(label="What would you like to count?", value="strawberry", interactive=True)
|
|
|
14 |
import io
|
15 |
from enum import Enum
|
16 |
import os
|
|
|
|
|
|
|
|
|
|
|
17 |
cwd = os.getcwd()
|
18 |
# Suppress warnings to avoid overflowing the log.
|
19 |
import warnings
|
|
|
140 |
|
141 |
return model, data_transform
|
142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
# APP:
|
144 |
def get_box_inputs(prompts):
|
145 |
box_inputs = []
|
|
|
176 |
|
177 |
return inds_to_filter
|
178 |
|
179 |
+
def generate_heatmap(image, boxes):
|
180 |
+
# Plot results.
|
181 |
+
(w, h) = image.size
|
182 |
+
det_map = np.zeros((h, w))
|
183 |
+
det_map[(h * boxes[:, 1]).astype(int), (w * boxes[:, 0]).astype(int)] = 1
|
184 |
+
det_map = ndimage.gaussian_filter(
|
185 |
+
det_map, sigma=(w // 200, w // 200), order=0
|
186 |
+
)
|
187 |
+
plt.imshow(image)
|
188 |
+
plt.imshow(det_map[None, :].transpose(1, 2, 0), 'jet', interpolation='none', alpha=0.7)
|
189 |
+
plt.axis('off')
|
190 |
+
img_buf = io.BytesIO()
|
191 |
+
plt.savefig(img_buf, format='png', bbox_inches='tight')
|
192 |
+
plt.close()
|
193 |
+
|
194 |
+
output_img = Image.open(img_buf)
|
195 |
+
return output_img
|
196 |
+
|
197 |
+
def generate_output_label(text, num_exemplars):
|
198 |
+
out_label = "Detected instances predicted with"
|
199 |
+
if len(text.strip()) > 0:
|
200 |
+
out_label += " text"
|
201 |
+
if num_exemplars == 1:
|
202 |
+
out_label += " and " + str(num_exemplars) + " visual exemplar."
|
203 |
+
elif num_exemplars > 1:
|
204 |
+
out_label += " and " + str(num_exemplars) + " visual exemplars."
|
205 |
+
else:
|
206 |
+
out_label += "."
|
207 |
+
elif num_exemplars > 0:
|
208 |
+
if num_exemplars == 1:
|
209 |
+
out_label += " " + str(num_exemplars) + " visual exemplar."
|
210 |
+
else:
|
211 |
+
out_label += " " + str(num_exemplars) + " visual exemplars."
|
212 |
+
else:
|
213 |
+
out_label = "Nothing specified to detect."
|
214 |
+
|
215 |
+
return out_label
|
216 |
+
|
217 |
+
def preprocess(image, input_prompts = None):
|
218 |
+
if input_prompts == None:
|
219 |
+
prompts = { "image": image, "points": []}
|
220 |
+
else:
|
221 |
+
prompts = input_prompts
|
222 |
+
|
223 |
+
input_image, _ = transform(image, None)
|
224 |
+
exemplar = get_box_inputs(prompts["points"])
|
225 |
+
# Wrapping exemplar in a dictionary to apply only relevant transforms
|
226 |
+
input_image_exemplar, exemplar = transform(prompts['image'], {"exemplars": torch.tensor(exemplar)})
|
227 |
+
exemplar = exemplar["exemplars"]
|
228 |
+
|
229 |
+
return input_image, input_image_exemplar, exemplar
|
230 |
+
|
231 |
+
def get_boxes_from_prediction(model_output, text, keywords = ""):
|
232 |
+
ind_to_filter = get_ind_to_filter(text, model_output["token"][0].word_ids, keywords)
|
233 |
+
logits = model_output["pred_logits"].sigmoid()[0][:, ind_to_filter]
|
234 |
+
boxes = model_output["pred_boxes"][0]
|
235 |
+
if len(keywords.strip()) > 0:
|
236 |
+
box_mask = (logits > CONF_THRESH).sum(dim=-1) == len(ind_to_filter)
|
237 |
+
else:
|
238 |
+
box_mask = logits.max(dim=-1).values > CONF_THRESH
|
239 |
+
boxes = boxes[box_mask, :].cpu().numpy()
|
240 |
+
logits = logits[box_mask, :].cpu().numpy()
|
241 |
+
return boxes, logits
|
242 |
+
|
243 |
+
def predict(model, image, text, prompts, device):
|
244 |
+
keywords = "" # do not handle this for now
|
245 |
+
input_image, input_image_exemplar, exemplar = preprocess(image, prompts)
|
246 |
+
|
247 |
+
input_images = input_image.unsqueeze(0).to(device)
|
248 |
+
input_image_exemplars = input_image_exemplar.unsqueeze(0).to(device)
|
249 |
+
exemplars = [exemplar.to(device)]
|
250 |
+
|
251 |
+
with torch.no_grad():
|
252 |
+
model_output = model(
|
253 |
+
nested_tensor_from_tensor_list(input_images),
|
254 |
+
nested_tensor_from_tensor_list(input_image_exemplars),
|
255 |
+
exemplars,
|
256 |
+
[torch.tensor([0]).to(device) for _ in range(len(input_images))],
|
257 |
+
captions=[text + " ."] * len(input_images),
|
258 |
+
)
|
259 |
+
|
260 |
+
keywords = ""
|
261 |
+
return get_boxes_from_prediction(model_output, text, keywords)
|
262 |
+
|
263 |
+
examples = [
|
264 |
+
["strawberry.jpg", "strawberry", {"image": "strawberry.jpg"}],
|
265 |
+
["strawberry.jpg", "blueberry", {"image": "strawberry.jpg"}],
|
266 |
+
["bird-1.JPG", "bird", {"image": "bird-2.JPG"}],
|
267 |
+
["fish.jpg", "fish", {"image": "fish.jpg"}],
|
268 |
+
["women.jpg", "girl", {"image": "women.jpg"}],
|
269 |
+
["women.jpg", "boy", {"image": "women.jpg"}],
|
270 |
+
["balloon.jpg", "hot air balloon", {"image": "balloon.jpg"}],
|
271 |
+
["deer.jpg", "deer", {"image": "deer.jpg"}],
|
272 |
+
["apple.jpg", "apple", {"image": "apple.jpg"}],
|
273 |
+
["egg.jpg", "egg", {"image": "egg.jpg"}],
|
274 |
+
["stamp.jpg", "stamp", {"image": "stamp.jpg"}],
|
275 |
+
["green-pea.jpg", "green pea", {"image": "green-pea.jpg"}],
|
276 |
+
["lego.jpg", "lego", {"image": "lego.jpg"}]
|
277 |
+
]
|
278 |
+
|
279 |
+
|
280 |
if __name__ == '__main__':
|
281 |
|
282 |
parser = argparse.ArgumentParser("Counting Application", parents=[get_args_parser()])
|
|
|
287 |
|
288 |
@spaces.GPU(duration=120)
|
289 |
def count(image, text, prompts, state, device):
|
|
|
|
|
|
|
|
|
290 |
if prompts is None:
|
291 |
prompts = {"image": image, "points": []}
|
292 |
+
|
293 |
+
boxes, _ = predict(model, image, text, prompts, device)
|
294 |
+
count = len(boxes)
|
295 |
+
output_img = generate_heatmap(image, boxes)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
296 |
|
297 |
+
num_exemplars = len(get_box_inputs(prompts["points"]))
|
298 |
+
out_label = generate_output_label(text, num_exemplars)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
299 |
|
300 |
if AppSteps.TEXT_AND_EXEMPLARS not in state:
|
301 |
exemplar_image = ImagePrompter(type='pil', label='Visual Exemplar Image', value=prompts, interactive=True, visible=True)
|
|
|
315 |
main_instructions_comp = gr.Markdown(visible=True)
|
316 |
step_3 = gr.Tab(visible=True)
|
317 |
|
318 |
+
return (gr.Image(output_img, visible=True, label=out_label, show_label=True), gr.Number(label="Predicted Count", visible=True, value=count), new_submit_btn, gr.Tab(visible=True), step_3, state)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
319 |
|
320 |
@spaces.GPU
|
321 |
def count_main(image, text, prompts, device):
|
|
|
|
|
322 |
if prompts is None:
|
323 |
prompts = {"image": image, "points": []}
|
324 |
+
boxes, _ = predict(model, image, text, prompts, device)
|
325 |
+
count = len(boxes)
|
326 |
+
output_img = generate_heatmap(image, boxes)
|
327 |
+
num_exemplars = len(get_box_inputs(prompts["points"]))
|
328 |
+
out_label = generate_output_label(text, num_exemplars)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
329 |
|
330 |
+
return (gr.Image(output_img, visible=True, label=out_label, show_label=True), gr.Number(label="Predicted Count", visible=True, value=count))
|
331 |
|
332 |
def remove_label(image):
|
333 |
return gr.Image(show_label=False)
|
|
|
369 |
with gr.Accordion("Open for Further Information", open=False):
|
370 |
gr.Markdown(exemplar_img_drawing_instructions_part_2)
|
371 |
with gr.Tab("Step 1", visible=True) as step_1:
|
372 |
+
input_image = gr.Image(type='pil', label='Input Image', show_label='True', value="strawberry.jpg", interactive=False)
|
373 |
gr.Markdown('# Click "Count" to count the strawberries.')
|
374 |
|
375 |
with gr.Column():
|
376 |
with gr.Tab("Output Image"):
|
377 |
+
detected_instances = gr.Image(label="Detected Instances", show_label='True', interactive=False, visible=True)
|
378 |
|
379 |
with gr.Row():
|
380 |
input_text = gr.Textbox(label="What would you like to count?", value="strawberry", interactive=True)
|
requirements.txt
CHANGED
@@ -12,6 +12,8 @@ ushlex
|
|
12 |
gradio>=4.0.0,<5
|
13 |
gradio_image_prompter-0.1.0-py3-none-any.whl
|
14 |
spaces
|
|
|
|
|
15 |
--extra-index-url https://download.pytorch.org/whl/cu121
|
16 |
torch<2.6
|
17 |
torchvision
|
|
|
12 |
gradio>=4.0.0,<5
|
13 |
gradio_image_prompter-0.1.0-py3-none-any.whl
|
14 |
spaces
|
15 |
+
filetype
|
16 |
+
tqdm
|
17 |
--extra-index-url https://download.pytorch.org/whl/cu121
|
18 |
torch<2.6
|
19 |
torchvision
|