File size: 13,796 Bytes
f1ea451
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
import copy
import os

import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning import loggers as pl_loggers
from pytorch_lightning.callbacks import *
from torch.cuda import amp
from torch.optim.optimizer import Optimizer
from torch.utils.data.dataset import TensorDataset
from model.seq2seq import DiffusionPredictor

from config import *
from dist_utils import *
from renderer import *

# This part is modified from: https://github.com/phizaz/diffae/blob/master/experiment.py
class LitModel(pl.LightningModule):
    def __init__(self, conf: TrainConfig):
        super().__init__()
        assert conf.train_mode != TrainMode.manipulate
        if conf.seed is not None:
            pl.seed_everything(conf.seed)

        self.save_hyperparameters(conf.as_dict_jsonable())

        self.conf = conf

        self.model = DiffusionPredictor(conf)
        
        self.ema_model = copy.deepcopy(self.model)
        self.ema_model.requires_grad_(False)
        self.ema_model.eval()

        self.sampler = conf.make_diffusion_conf().make_sampler()
        self.eval_sampler = conf.make_eval_diffusion_conf().make_sampler()

        # this is shared for both model and latent
        self.T_sampler = conf.make_T_sampler()

        if conf.train_mode.use_latent_net():
            self.latent_sampler = conf.make_latent_diffusion_conf(
            ).make_sampler()
            self.eval_latent_sampler = conf.make_latent_eval_diffusion_conf(
            ).make_sampler()
        else:
            self.latent_sampler = None
            self.eval_latent_sampler = None

        # initial variables for consistent sampling
        self.register_buffer(
            'x_T',
            torch.randn(conf.sample_size, 3, conf.img_size, conf.img_size))


    def render(self, start, motion_direction_start, audio_driven, face_location, face_scale, ypr_info, noisyT, step_T, control_flag):
        if step_T is None:
            sampler = self.eval_sampler
        else:
            sampler = self.conf._make_diffusion_conf(step_T).make_sampler()

        pred_img = render_condition(self.conf,
                                        self.ema_model,
                                        sampler, start, motion_direction_start, audio_driven, face_location, face_scale, ypr_info, noisyT, control_flag)
        return pred_img

    def forward(self, noise=None, x_start=None, ema_model: bool = False):
        with amp.autocast(False):
            if not self.disable_ema:
                model = self.ema_model
            else:
                model = self.model
            gen = self.eval_sampler.sample(model=model,
                                           noise=noise,
                                           x_start=x_start)
            return gen

    def setup(self, stage=None) -> None:
        """
        make datasets & seeding each worker separately
        """
        ##############################################
        # NEED TO SET THE SEED SEPARATELY HERE
        if self.conf.seed is not None:
            seed = self.conf.seed * get_world_size() + self.global_rank
            np.random.seed(seed)
            torch.manual_seed(seed)
            torch.cuda.manual_seed(seed)
            print('local seed:', seed)
        ##############################################

        self.train_data = self.conf.make_dataset()
        print('train data:', len(self.train_data))
        self.val_data = self.train_data
        print('val data:', len(self.val_data))

    def _train_dataloader(self, drop_last=True):
        """
        really make the dataloader
        """
        # make sure to use the fraction of batch size
        # the batch size is global!
        conf = self.conf.clone()
        conf.batch_size = self.batch_size

        dataloader = conf.make_loader(self.train_data,
                                      shuffle=True,
                                      drop_last=drop_last)
        return dataloader

    def train_dataloader(self):
        """
        return the dataloader, if diffusion mode => return image dataset
        if latent mode => return the inferred latent dataset
        """
        print('on train dataloader start ...')
        if self.conf.train_mode.require_dataset_infer():
            if self.conds is None:
                # usually we load self.conds from a file
                # so we do not need to do this again!
                self.conds = self.infer_whole_dataset()
                # need to use float32! unless the mean & std will be off!
                # (1, c)
                self.conds_mean.data = self.conds.float().mean(dim=0,
                                                               keepdim=True)
                self.conds_std.data = self.conds.float().std(dim=0,
                                                             keepdim=True)
            print('mean:', self.conds_mean.mean(), 'std:',
                  self.conds_std.mean())

            # return the dataset with pre-calculated conds
            conf = self.conf.clone()
            conf.batch_size = self.batch_size
            data = TensorDataset(self.conds)
            return conf.make_loader(data, shuffle=True)
        else:
            return self._train_dataloader()

    @property
    def batch_size(self):
        """
        local batch size for each worker
        """
        ws = get_world_size()
        assert self.conf.batch_size % ws == 0
        return self.conf.batch_size // ws

    @property
    def num_samples(self):
        """
        (global) batch size * iterations
        """
        # batch size here is global!
        # global_step already takes into account the accum batches
        return self.global_step * self.conf.batch_size_effective

    def is_last_accum(self, batch_idx):
        """
        is it the last gradient accumulation loop? 
        used with gradient_accum > 1 and to see if the optimizer will perform "step" in this iteration or not
        """
        return (batch_idx + 1) % self.conf.accum_batches == 0

    def training_step(self, batch, batch_idx):
        """
        given an input, calculate the loss function
        no optimization at this stage.
        """
        with amp.autocast(False):
            motion_start = batch['motion_start'] # torch.Size([B, 512])
            motion_direction = batch['motion_direction'] # torch.Size([B, 125, 20])
            audio_feats = batch['audio_feats'].float() # torch.Size([B, 25, 250, 1024])
            face_location = batch['face_location'].float() # torch.Size([B, 125])
            face_scale = batch['face_scale'].float() # torch.Size([B, 125, 1])
            yaw_pitch_roll = batch['yaw_pitch_roll'].float() # torch.Size([B, 125, 3])
            motion_direction_start = batch['motion_direction_start'].float() # torch.Size([B, 20])

            # import pdb; pdb.set_trace()
            if self.conf.train_mode == TrainMode.diffusion:
                """
                main training mode!!!
                """
                # with numpy seed we have the problem that the sample t's are related!
                t, weight = self.T_sampler.sample(len(motion_start), motion_start.device)
                losses = self.sampler.training_losses(model=self.model,
                                                      motion_direction_start=motion_direction_start,
                                                      motion_target=motion_direction,
                                                      motion_start=motion_start, 
                                                      audio_feats=audio_feats, 
                                                      face_location=face_location,
                                                      face_scale=face_scale,
                                                      yaw_pitch_roll=yaw_pitch_roll,
                                                      t=t)
            else:
                raise NotImplementedError()

            loss = losses['loss'].mean()
            # divide by accum batches to make the accumulated gradient exact!
            for key in losses.keys():
                losses[key] = self.all_gather(losses[key]).mean()

            if self.global_rank == 0:
                self.logger.experiment.add_scalar('loss', losses['loss'],
                                                  self.num_samples)
                for key in losses:
                    self.logger.experiment.add_scalar(
                        f'loss/{key}', losses[key], self.num_samples)

        return {'loss': loss}

    def on_train_batch_end(self, outputs, batch, batch_idx: int,
                           dataloader_idx: int) -> None:
        """
        after each training step ...
        """
        if self.is_last_accum(batch_idx):

            if self.conf.train_mode == TrainMode.latent_diffusion:
                # it trains only the latent hence change only the latent
                ema(self.model.latent_net, self.ema_model.latent_net,
                    self.conf.ema_decay)
            else:
                ema(self.model, self.ema_model, self.conf.ema_decay)

    def on_before_optimizer_step(self, optimizer: Optimizer,
                                 optimizer_idx: int) -> None:
        # fix the fp16 + clip grad norm problem with pytorch lightinng
        # this is the currently correct way to do it
        if self.conf.grad_clip > 0:
            # from trainer.params_grads import grads_norm, iter_opt_params
            params = [
                p for group in optimizer.param_groups for p in group['params']
            ]
            torch.nn.utils.clip_grad_norm_(params,
                                           max_norm=self.conf.grad_clip)
    def configure_optimizers(self):
        out = {}
        if self.conf.optimizer == OptimizerType.adam:
            optim = torch.optim.Adam(self.model.parameters(),
                                     lr=self.conf.lr,
                                     weight_decay=self.conf.weight_decay)
        elif self.conf.optimizer == OptimizerType.adamw:
            optim = torch.optim.AdamW(self.model.parameters(),
                                      lr=self.conf.lr,
                                      weight_decay=self.conf.weight_decay)
        else:
            raise NotImplementedError()
        out['optimizer'] = optim
        if self.conf.warmup > 0:
            sched = torch.optim.lr_scheduler.LambdaLR(optim,
                                                      lr_lambda=WarmupLR(
                                                          self.conf.warmup))
            out['lr_scheduler'] = {
                'scheduler': sched,
                'interval': 'step',
            }
        return out

    def split_tensor(self, x):
        """
        extract the tensor for a corresponding "worker" in the batch dimension

        Args:
            x: (n, c)

        Returns: x: (n_local, c)
        """
        n = len(x)
        rank = self.global_rank
        world_size = get_world_size()
        # print(f'rank: {rank}/{world_size}')
        per_rank = n // world_size
        return x[rank * per_rank:(rank + 1) * per_rank]

def ema(source, target, decay):
    source_dict = source.state_dict()
    target_dict = target.state_dict()
    for key in source_dict.keys():
        target_dict[key].data.copy_(target_dict[key].data * decay +
                                    source_dict[key].data * (1 - decay))


class WarmupLR:
    def __init__(self, warmup) -> None:
        self.warmup = warmup

    def __call__(self, step):
        return min(step, self.warmup) / self.warmup


def is_time(num_samples, every, step_size):
    closest = (num_samples // every) * every
    return num_samples - closest < step_size


def train(conf: TrainConfig, gpus, nodes=1, mode: str = 'train'):
    print('conf:', conf.name)
    # assert not (conf.fp16 and conf.grad_clip > 0
    #             ), 'pytorch lightning has bug with amp + gradient clipping'
    model = LitModel(conf)

    if not os.path.exists(conf.logdir):
        os.makedirs(conf.logdir)
    checkpoint = ModelCheckpoint(dirpath=f'{conf.logdir}',
                                 save_last=True,
                                 save_top_k=-1,
                                 every_n_epochs=10)
    checkpoint_path = f'{conf.logdir}/last.ckpt'
    print('ckpt path:', checkpoint_path)
    if os.path.exists(checkpoint_path):
        resume = checkpoint_path
        print('resume!')
    else:
        if conf.continue_from is not None:
            # continue from a checkpoint
            resume = conf.continue_from.pathcd 
        else:
            resume = None

    tb_logger = pl_loggers.TensorBoardLogger(save_dir=conf.logdir,
                                             name=None,
                                             version='')

    # from pytorch_lightning.

    plugins = []
    if len(gpus) == 1 and nodes == 1:
        accelerator = None
    else:
        accelerator = 'ddp'
        from pytorch_lightning.plugins import DDPPlugin

        # important for working with gradient checkpoint
        plugins.append(DDPPlugin(find_unused_parameters=True))

    trainer = pl.Trainer(
        max_steps=conf.total_samples // conf.batch_size_effective,
        resume_from_checkpoint=resume,
        gpus=gpus,
        num_nodes=nodes,
        accelerator=accelerator,
        precision=16 if conf.fp16 else 32,
        callbacks=[
            checkpoint,
            LearningRateMonitor(),
        ],
        # clip in the model instead
        # gradient_clip_val=conf.grad_clip,
        replace_sampler_ddp=True,
        logger=tb_logger,
        accumulate_grad_batches=conf.accum_batches,
        plugins=plugins,
    )

    trainer.fit(model)