File size: 16,722 Bytes
f1ea451
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
import math
import torch
from torch import nn
from torch.nn import functional as F
import numpy as np


def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
    return F.leaky_relu(input + bias, negative_slope) * scale


class FusedLeakyReLU(nn.Module):
    def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5):
        super().__init__()
        self.bias = nn.Parameter(torch.zeros(1, channel, 1, 1))
        self.negative_slope = negative_slope
        self.scale = scale

    def forward(self, input):
        out = fused_leaky_relu(input, self.bias, self.negative_slope, self.scale)
        return out


def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1):
    _, minor, in_h, in_w = input.shape
    kernel_h, kernel_w = kernel.shape

    out = input.view(-1, minor, in_h, 1, in_w, 1)
    out = F.pad(out, [0, up_x - 1, 0, 0, 0, up_y - 1, 0, 0])
    out = out.view(-1, minor, in_h * up_y, in_w * up_x)

    out = F.pad(out, [max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)])
    out = out[:, :, max(-pad_y0, 0): out.shape[2] - max(-pad_y1, 0),
          max(-pad_x0, 0): out.shape[3] - max(-pad_x1, 0), ]

    out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1])
    w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
    out = F.conv2d(out, w)
    out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
                      in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1, )
    return out[:, :, ::down_y, ::down_x]


def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
    return upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1])


class PixelNorm(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, input):
        return input * torch.rsqrt(torch.mean(input ** 2, dim=1, keepdim=True) + 1e-8)


class MotionPixelNorm(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, input):
        return input * torch.rsqrt(torch.mean(input ** 2, dim=2, keepdim=True) + 1e-8)


def make_kernel(k):
    k = torch.tensor(k, dtype=torch.float32)

    if k.ndim == 1:
        k = k[None, :] * k[:, None]

    k /= k.sum()

    return k


class Upsample(nn.Module):
    def __init__(self, kernel, factor=2):
        super().__init__()

        self.factor = factor
        kernel = make_kernel(kernel) * (factor ** 2)
        self.register_buffer('kernel', kernel)

        p = kernel.shape[0] - factor

        pad0 = (p + 1) // 2 + factor - 1
        pad1 = p // 2

        self.pad = (pad0, pad1)

    def forward(self, input):
        return upfirdn2d(input, self.kernel, up=self.factor, down=1, pad=self.pad)


class Downsample(nn.Module):
    def __init__(self, kernel, factor=2):
        super().__init__()

        self.factor = factor
        kernel = make_kernel(kernel)
        self.register_buffer('kernel', kernel)

        p = kernel.shape[0] - factor

        pad0 = (p + 1) // 2
        pad1 = p // 2

        self.pad = (pad0, pad1)

    def forward(self, input):
        return upfirdn2d(input, self.kernel, up=1, down=self.factor, pad=self.pad)


class Blur(nn.Module):
    def __init__(self, kernel, pad, upsample_factor=1):
        super().__init__()

        kernel = make_kernel(kernel)

        if upsample_factor > 1:
            kernel = kernel * (upsample_factor ** 2)

        self.register_buffer('kernel', kernel)

        self.pad = pad

    def forward(self, input):
        return upfirdn2d(input, self.kernel, pad=self.pad)


class EqualConv2d(nn.Module):
    def __init__(self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True):
        super().__init__()

        self.weight = nn.Parameter(torch.randn(out_channel, in_channel, kernel_size, kernel_size))
        self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2)

        self.stride = stride
        self.padding = padding

        if bias:
            self.bias = nn.Parameter(torch.zeros(out_channel))
        else:
            self.bias = None

    def forward(self, input):

        return F.conv2d(input, self.weight * self.scale, bias=self.bias, stride=self.stride, padding=self.padding, )

    def __repr__(self):
        return (
            f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},'
            f' {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})'
        )


class EqualLinear(nn.Module):
    def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None):
        super().__init__()

        self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))

        if bias:
            self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
        else:
            self.bias = None

        self.activation = activation

        self.scale = (1 / math.sqrt(in_dim)) * lr_mul
        self.lr_mul = lr_mul

    def forward(self, input):

        if self.activation:
            out = F.linear(input, self.weight * self.scale)
            out = fused_leaky_relu(out, self.bias * self.lr_mul)
        else:
            out = F.linear(input, self.weight * self.scale, bias=self.bias * self.lr_mul)

        return out

    def __repr__(self):
        return (f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})')


class ScaledLeakyReLU(nn.Module):
    def __init__(self, negative_slope=0.2):
        super().__init__()

        self.negative_slope = negative_slope

    def forward(self, input):
        return F.leaky_relu(input, negative_slope=self.negative_slope)


class ModulatedConv2d(nn.Module):
    def __init__(self, in_channel, out_channel, kernel_size, style_dim, demodulate=True, upsample=False,
                 downsample=False, blur_kernel=[1, 3, 3, 1], ):
        super().__init__()

        self.eps = 1e-8
        self.kernel_size = kernel_size
        self.in_channel = in_channel
        self.out_channel = out_channel
        self.upsample = upsample
        self.downsample = downsample

        if upsample:
            factor = 2
            p = (len(blur_kernel) - factor) - (kernel_size - 1)
            pad0 = (p + 1) // 2 + factor - 1
            pad1 = p // 2 + 1

            self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor=factor)

        if downsample:
            factor = 2
            p = (len(blur_kernel) - factor) + (kernel_size - 1)
            pad0 = (p + 1) // 2
            pad1 = p // 2

            self.blur = Blur(blur_kernel, pad=(pad0, pad1))

        fan_in = in_channel * kernel_size ** 2
        self.scale = 1 / math.sqrt(fan_in)
        self.padding = kernel_size // 2

        self.weight = nn.Parameter(torch.randn(1, out_channel, in_channel, kernel_size, kernel_size))

        self.modulation = EqualLinear(style_dim, in_channel, bias_init=1)
        self.demodulate = demodulate

    def __repr__(self):
        return (
            f'{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, '
            f'upsample={self.upsample}, downsample={self.downsample})'
        )

    def forward(self, input, style):
        batch, in_channel, height, width = input.shape

        style = self.modulation(style).view(batch, 1, in_channel, 1, 1)
        weight = self.scale * self.weight * style

        if self.demodulate:
            demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-8)
            weight = weight * demod.view(batch, self.out_channel, 1, 1, 1)

        weight = weight.view(batch * self.out_channel, in_channel, self.kernel_size, self.kernel_size)

        if self.upsample:
            input = input.view(1, batch * in_channel, height, width)
            weight = weight.view(batch, self.out_channel, in_channel, self.kernel_size, self.kernel_size)
            weight = weight.transpose(1, 2).reshape(batch * in_channel, self.out_channel, self.kernel_size,
                                                    self.kernel_size)
            out = F.conv_transpose2d(input, weight, padding=0, stride=2, groups=batch)
            _, _, height, width = out.shape
            out = out.view(batch, self.out_channel, height, width)
            out = self.blur(out)
        elif self.downsample:
            input = self.blur(input)
            _, _, height, width = input.shape
            input = input.view(1, batch * in_channel, height, width)
            out = F.conv2d(input, weight, padding=0, stride=2, groups=batch)
            _, _, height, width = out.shape
            out = out.view(batch, self.out_channel, height, width)
        else:
            input = input.view(1, batch * in_channel, height, width)
            out = F.conv2d(input, weight, padding=self.padding, groups=batch)
            _, _, height, width = out.shape
            out = out.view(batch, self.out_channel, height, width)

        return out


class NoiseInjection(nn.Module):
    def __init__(self):
        super().__init__()

        self.weight = nn.Parameter(torch.zeros(1))

    def forward(self, image, noise=None):

        if noise is None:
            return image
        else:
            return image + self.weight * noise


class ConstantInput(nn.Module):
    def __init__(self, channel, size=4):
        super().__init__()

        self.input = nn.Parameter(torch.randn(1, channel, size, size))

    def forward(self, input):
        batch = input.shape[0]
        out = self.input.repeat(batch, 1, 1, 1)

        return out


class StyledConv(nn.Module):
    def __init__(self, in_channel, out_channel, kernel_size, style_dim, upsample=False, blur_kernel=[1, 3, 3, 1],
                 demodulate=True):
        super().__init__()

        self.conv = ModulatedConv2d(
            in_channel,
            out_channel,
            kernel_size,
            style_dim,
            upsample=upsample,
            blur_kernel=blur_kernel,
            demodulate=demodulate,
        )

        self.noise = NoiseInjection()
        self.activate = FusedLeakyReLU(out_channel)

    def forward(self, input, style, noise=None):
        out = self.conv(input, style)
        out = self.noise(out, noise=noise)
        out = self.activate(out)

        return out


class ConvLayer(nn.Sequential):
    def __init__(
            self,
            in_channel,
            out_channel,
            kernel_size,
            downsample=False,
            blur_kernel=[1, 3, 3, 1],
            bias=True,
            activate=True,
    ):
        layers = []

        if downsample:
            factor = 2
            p = (len(blur_kernel) - factor) + (kernel_size - 1)
            pad0 = (p + 1) // 2
            pad1 = p // 2

            layers.append(Blur(blur_kernel, pad=(pad0, pad1)))

            stride = 2
            self.padding = 0

        else:
            stride = 1
            self.padding = kernel_size // 2

        layers.append(EqualConv2d(in_channel, out_channel, kernel_size, padding=self.padding, stride=stride,
                                  bias=bias and not activate))

        if activate:
            if bias:
                layers.append(FusedLeakyReLU(out_channel))
            else:
                layers.append(ScaledLeakyReLU(0.2))

        super().__init__(*layers)


class ToRGB(nn.Module):
    def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1, 3, 3, 1]):
        super().__init__()

        if upsample:
            self.upsample = Upsample(blur_kernel)

        self.conv = ConvLayer(in_channel, 3, 1)
        self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))

    def forward(self, input, skip=None):
        out = self.conv(input)
        out = out + self.bias

        if skip is not None:
            skip = self.upsample(skip)
            out = out + skip

        return out


class ToFlow(nn.Module):
    def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1, 3, 3, 1]):
        super().__init__()

        if upsample:
            self.upsample = Upsample(blur_kernel)
        
        self.style_dim = style_dim
        self.in_channel = in_channel
        self.conv = ModulatedConv2d(in_channel, 3, 1, style_dim, demodulate=False)
        self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))

    def forward(self, input, style, feat, skip=None): # input 是来自上一层的 feature, style 是 512 的 condition, feat 是来自于 unet 的跳层
        out = self.conv(input, style)
        out = out + self.bias

        # warping
        xs = np.linspace(-1, 1, input.size(2))
        
        xs = np.meshgrid(xs, xs)
        xs = np.stack(xs, 2)

        xs = torch.tensor(xs, requires_grad=False).float().unsqueeze(0).repeat(input.size(0), 1, 1, 1).to(input.device)
        # import pdb;pdb.set_trace()
        if skip is not None:
            skip = self.upsample(skip)
            out = out + skip

        sampler = torch.tanh(out[:, 0:2, :, :])
        mask = torch.sigmoid(out[:, 2:3, :, :])
        flow = sampler.permute(0, 2, 3, 1) + xs # xs在这里相当于一个 location 的位置

        feat_warp = F.grid_sample(feat, flow) * mask
        # import pdb;pdb.set_trace()
        return feat_warp, feat_warp + input * (1.0 - mask), out


class Direction(nn.Module):
    def __init__(self, motion_dim):
        super(Direction, self).__init__()

        self.weight = nn.Parameter(torch.randn(512, motion_dim))

    def forward(self, input):
        # input: (bs*t) x 512

        weight = self.weight + 1e-8
        Q, R = torch.qr(weight)  # get eignvector, orthogonal [n1, n2, n3, n4]

        if input is None:
            return Q
        else:
            input_diag = torch.diag_embed(input)  # alpha, diagonal matrix
            out = torch.matmul(input_diag, Q.T)
            out = torch.sum(out, dim=1)

            return out

class Synthesis(nn.Module):
    def __init__(self, size, style_dim, motion_dim, blur_kernel=[1, 3, 3, 1], channel_multiplier=1):
        super(Synthesis, self).__init__()

        self.size = size
        self.style_dim = style_dim
        self.motion_dim = motion_dim

        self.direction = Direction(motion_dim) # Linear Motion Decomposition (LMD) from LIA

        self.channels = {
            4: 512,
            8: 512,
            16: 512,
            32: 512,
            64: 256 * channel_multiplier,
            128: 128 * channel_multiplier,
            256: 64 * channel_multiplier,
            512: 32 * channel_multiplier,
            1024: 16 * channel_multiplier,
        }

        self.input = ConstantInput(self.channels[4])
        self.conv1 = StyledConv(self.channels[4], self.channels[4], 3, style_dim, blur_kernel=blur_kernel)
        self.to_rgb1 = ToRGB(self.channels[4], style_dim, upsample=False)

        self.log_size = int(math.log(size, 2))
        self.num_layers = (self.log_size - 2) * 2 + 1

        self.convs = nn.ModuleList()
        self.upsamples = nn.ModuleList()
        self.to_rgbs = nn.ModuleList()
        self.to_flows = nn.ModuleList()

        in_channel = self.channels[4]

        for i in range(3, self.log_size + 1):
            out_channel = self.channels[2 ** i]

            self.convs.append(StyledConv(in_channel, out_channel, 3, style_dim, upsample=True,
                                         blur_kernel=blur_kernel))
            self.convs.append(StyledConv(out_channel, out_channel, 3, style_dim, blur_kernel=blur_kernel))
            self.to_rgbs.append(ToRGB(out_channel, style_dim))

            self.to_flows.append(ToFlow(out_channel, style_dim))

            in_channel = out_channel

        self.n_latent = self.log_size * 2 - 2
        
    def forward(self, source_before_decoupling, target_motion, feats):

        directions = self.direction(target_motion)
        latent = source_before_decoupling + directions  # wa + directions

        inject_index = self.n_latent
        latent = latent.unsqueeze(1).repeat(1, inject_index, 1)
        
        out = self.input(latent)
        out = self.conv1(out, latent[:, 0])

        i = 1
        for conv1, conv2, to_rgb, to_flow, feat in zip(self.convs[::2], self.convs[1::2], self.to_rgbs,
                                                       self.to_flows, feats):
            out = conv1(out, latent[:, i])
            out = conv2(out, latent[:, i + 1])
            if out.size(2) == 8:
                out_warp, out, skip_flow = to_flow(out, latent[:, i + 2], feat)
                skip = to_rgb(out_warp)
            else:
                out_warp, out, skip_flow = to_flow(out, latent[:, i + 2], feat, skip_flow)
                skip = to_rgb(out_warp, skip)
            i += 2

        img = skip

        return img