File size: 14,040 Bytes
f1ea451
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
from LIA_Model import LIA_Model
import torch
import numpy as np
import os
from PIL import Image
from tqdm import tqdm
import argparse
import numpy as np
from torchvision import transforms
from templates import *
import argparse
import shutil
from moviepy.editor import *
import librosa
import python_speech_features
import importlib.util
import time

def check_package_installed(package_name):
    package_spec = importlib.util.find_spec(package_name)
    if package_spec is None:
        print(f"{package_name} is not installed.")
        return False
    else:
        print(f"{package_name} is installed.")
        return True

def frames_to_video(input_path, audio_path, output_path, fps=25):
    image_files = [os.path.join(input_path, img) for img in sorted(os.listdir(input_path))]
    clips = [ImageClip(m).set_duration(1/fps) for m in image_files]
    video = concatenate_videoclips(clips, method="compose")

    audio = AudioFileClip(audio_path)
    final_video = video.set_audio(audio)
    final_video.write_videofile(output_path, fps=fps, codec='libx264', audio_codec='aac')

def load_image(filename, size):
    img = Image.open(filename).convert('RGB')
    img = img.resize((size, size))
    img = np.asarray(img)
    img = np.transpose(img, (2, 0, 1))  # 3 x 256 x 256
    return img / 255.0

def img_preprocessing(img_path, size):
    img = load_image(img_path, size)  # [0, 1]
    img = torch.from_numpy(img).unsqueeze(0).float()  # [0, 1]
    imgs_norm = (img - 0.5) * 2.0  # [-1, 1]
    return imgs_norm

def saved_image(img_tensor, img_path):
    toPIL = transforms.ToPILImage()
    img = toPIL(img_tensor.detach().cpu().squeeze(0))  # 使用squeeze(0)来移除批次维度
    img.save(img_path)

def main(args):
    frames_result_saved_path = os.path.join(args.result_path, 'frames')
    os.makedirs(frames_result_saved_path, exist_ok=True)
    test_image_name = os.path.splitext(os.path.basename(args.test_image_path))[0]
    audio_name = os.path.splitext(os.path.basename(args.test_audio_path))[0]
    predicted_video_256_path = os.path.join(args.result_path,  f'{test_image_name}-{audio_name}.mp4')
    predicted_video_512_path = os.path.join(args.result_path,  f'{test_image_name}-{audio_name}_SR.mp4')
 
    #======Loading Stage 1 model=========
    lia = LIA_Model(motion_dim=args.motion_dim, fusion_type='weighted_sum')
    lia.load_lightning_model(args.stage1_checkpoint_path)
    lia.to(args.device)
    #============================

    conf = ffhq256_autoenc()
    conf.seed = args.seed
    conf.decoder_layers = args.decoder_layers
    conf.infer_type = args.infer_type
    conf.motion_dim = args.motion_dim
    
    if args.infer_type == 'mfcc_full_control':
        conf.face_location=True
        conf.face_scale=True
        conf.mfcc = True

    elif args.infer_type == 'mfcc_pose_only':
        conf.face_location=False
        conf.face_scale=False
        conf.mfcc = True

    elif args.infer_type == 'hubert_pose_only':
        conf.face_location=False
        conf.face_scale=False
        conf.mfcc = False

    elif args.infer_type == 'hubert_audio_only':
        conf.face_location=False
        conf.face_scale=False
        conf.mfcc = False

    elif args.infer_type == 'hubert_full_control':
        conf.face_location=True
        conf.face_scale=True
        conf.mfcc = False

    else:
        print('Type NOT Found!')
        exit(0)
        
    if not os.path.exists(args.test_image_path):
        print(f'{args.test_image_path} does not exist!')
        exit(0)
    
    if not os.path.exists(args.test_audio_path):
        print(f'{args.test_audio_path} does not exist!')
        exit(0)
    
    img_source = img_preprocessing(args.test_image_path, args.image_size).to(args.device)
    one_shot_lia_start, one_shot_lia_direction, feats = lia.get_start_direction_code(img_source, img_source, img_source, img_source)


    #======Loading Stage 2 model=========
    model = LitModel(conf)
    state = torch.load(args.stage2_checkpoint_path, map_location='cpu')
    model.load_state_dict(state, strict=True)
    model.ema_model.eval()
    model.ema_model.to(args.device);
    #=================================
    
    
    #======Audio Input=========
    if conf.infer_type.startswith('mfcc'):
        # MFCC features
        wav, sr = librosa.load(args.test_audio_path, sr=16000)
        input_values = python_speech_features.mfcc(signal=wav, samplerate=sr, numcep=13, winlen=0.025, winstep=0.01)
        d_mfcc_feat = python_speech_features.base.delta(input_values, 1)
        d_mfcc_feat2 = python_speech_features.base.delta(input_values, 2)
        audio_driven_obj = np.hstack((input_values, d_mfcc_feat, d_mfcc_feat2))
        frame_start, frame_end = 0, int(audio_driven_obj.shape[0]/4)
        audio_start, audio_end = int(frame_start * 4), int(frame_end * 4) # The video frame is fixed to 25 hz and the audio is fixed to 100 hz
        
        audio_driven = torch.Tensor(audio_driven_obj[audio_start:audio_end,:]).unsqueeze(0).float().to(args.device)
        
    elif conf.infer_type.startswith('hubert'):
        # Hubert features
        if not os.path.exists(args.test_hubert_path):
            
            if not check_package_installed('transformers'):
                print('Please install transformers module first.')
                exit(0)
            hubert_model_path = 'ckpts/chinese-hubert-large'
            if not os.path.exists(hubert_model_path):
                print('Please download the hubert weight into the ckpts path first.')
                exit(0)
            print('You did not extract the audio features in advance, extracting online now, which will increase processing delay')

            start_time = time.time()

            # load hubert model
            from transformers import Wav2Vec2FeatureExtractor, HubertModel
            audio_model = HubertModel.from_pretrained(hubert_model_path).to(args.device)
            feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(hubert_model_path)
            audio_model.feature_extractor._freeze_parameters()
            audio_model.eval()

            # hubert model forward pass
            audio, sr = librosa.load(args.test_audio_path, sr=16000)
            input_values = feature_extractor(audio, sampling_rate=16000, padding=True, do_normalize=True, return_tensors="pt").input_values
            input_values = input_values.to(args.device)
            ws_feats = []
            with torch.no_grad():
                outputs = audio_model(input_values, output_hidden_states=True)
                for i in range(len(outputs.hidden_states)):
                    ws_feats.append(outputs.hidden_states[i].detach().cpu().numpy())
                ws_feat_obj = np.array(ws_feats)
                ws_feat_obj = np.squeeze(ws_feat_obj, 1)
                ws_feat_obj = np.pad(ws_feat_obj, ((0, 0), (0, 1), (0, 0)), 'edge') # align the audio length with video frame
            
            execution_time = time.time() - start_time
            print(f"Extraction Audio Feature: {execution_time:.2f} Seconds")

            audio_driven_obj = ws_feat_obj
        else:
            print(f'Using audio feature from path: {args.test_hubert_path}')
            audio_driven_obj = np.load(args.test_hubert_path)

        frame_start, frame_end = 0, int(audio_driven_obj.shape[1]/2)
        audio_start, audio_end = int(frame_start * 2), int(frame_end * 2) # The video frame is fixed to 25 hz and the audio is fixed to 50 hz
        
        audio_driven = torch.Tensor(audio_driven_obj[:,audio_start:audio_end,:]).unsqueeze(0).float().to(args.device)
    #============================
    
    # Diffusion Noise
    noisyT = th.randn((1,frame_end, args.motion_dim)).to(args.device)
    
    #======Inputs for Attribute Control=========
    if os.path.exists(args.pose_driven_path):
        pose_obj = np.load(args.pose_driven_path)

       
        if len(pose_obj.shape) != 2:
            print('please check your pose information. The shape must be like (T, 3).')
            exit(0)
        if pose_obj.shape[1] != 3:
            print('please check your pose information. The shape must be like (T, 3).')
            exit(0)

        if pose_obj.shape[0] >= frame_end:
            pose_obj = pose_obj[:frame_end,:]
        else:
            padding = np.tile(pose_obj[-1, :], (frame_end - pose_obj.shape[0], 1))
            pose_obj = np.vstack((pose_obj, padding))
            
        pose_signal = torch.Tensor(pose_obj).unsqueeze(0).to(args.device) / 90 # 90 is for normalization here
    else:
        yaw_signal = torch.zeros(1, frame_end, 1).to(args.device) + args.pose_yaw
        pitch_signal = torch.zeros(1, frame_end, 1).to(args.device) + args.pose_pitch
        roll_signal = torch.zeros(1, frame_end, 1).to(args.device) + args.pose_roll
        pose_signal = torch.cat((yaw_signal, pitch_signal, roll_signal), dim=-1)
    
    pose_signal = torch.clamp(pose_signal, -1, 1)

    face_location_signal = torch.zeros(1, frame_end, 1).to(args.device) + args.face_location
    face_scae_signal = torch.zeros(1, frame_end, 1).to(args.device) + args.face_scale
    #===========================================

    start_time = time.time()

    #======Diffusion Denosing Process=========
    generated_directions = model.render(one_shot_lia_start, one_shot_lia_direction, audio_driven, face_location_signal, face_scae_signal, pose_signal, noisyT, args.step_T, control_flag=args.control_flag)
    #=========================================
    
    execution_time = time.time() - start_time
    print(f"Motion Diffusion Model: {execution_time:.2f} Seconds")

    generated_directions = generated_directions.detach().cpu().numpy()
    
    start_time = time.time()
    #======Rendering images frame-by-frame=========
    for pred_index in tqdm(range(generated_directions.shape[1])):
        ori_img_recon = lia.render(one_shot_lia_start, torch.Tensor(generated_directions[:,pred_index,:]).to(args.device), feats)
        ori_img_recon = ori_img_recon.clamp(-1, 1)
        wav_pred = (ori_img_recon.detach() + 1) / 2
        saved_image(wav_pred, os.path.join(frames_result_saved_path, "%06d.png"%(pred_index)))
    #==============================================
    
    execution_time = time.time() - start_time
    print(f"Renderer Model: {execution_time:.2f} Seconds")

    frames_to_video(frames_result_saved_path, args.test_audio_path, predicted_video_256_path)
    
    shutil.rmtree(frames_result_saved_path)
    
    
    # Enhancer
    # Code is modified from https://github.com/OpenTalker/SadTalker/blob/cd4c0465ae0b54a6f85af57f5c65fec9fe23e7f8/src/utils/face_enhancer.py#L26

    if args.face_sr and check_package_installed('gfpgan'):
        from face_sr.face_enhancer import enhancer_list
        import imageio

        # Super-resolution
        imageio.mimsave(predicted_video_512_path+'.tmp.mp4', enhancer_list(predicted_video_256_path, method='gfpgan', bg_upsampler=None), fps=float(25))
        
        # Merge audio and video
        video_clip = VideoFileClip(predicted_video_512_path+'.tmp.mp4')
        audio_clip = AudioFileClip(predicted_video_256_path)
        final_clip = video_clip.set_audio(audio_clip)
        final_clip.write_videofile(predicted_video_512_path, codec='libx264', audio_codec='aac')
        
        os.remove(predicted_video_512_path+'.tmp.mp4')

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--infer_type', type=str, default='mfcc_pose_only', help='mfcc_pose_only or mfcc_full_control')
    parser.add_argument('--test_image_path', type=str, default='./test_demos/portraits/monalisa.jpg', help='Path to the portrait')
    parser.add_argument('--test_audio_path', type=str, default='./test_demos/audios/english_female.wav', help='Path to the driven audio')
    parser.add_argument('--test_hubert_path', type=str, default='./test_demos/audios_hubert/english_female.npy', help='Path to the driven audio(hubert type). Not needed for MFCC')
    parser.add_argument('--result_path', type=str, default='./results/', help='Type of inference')
    parser.add_argument('--stage1_checkpoint_path', type=str, default='./ckpts/stage1.ckpt', help='Path to the checkpoint of Stage1')
    parser.add_argument('--stage2_checkpoint_path', type=str, default='./ckpts/pose_only.ckpt', help='Path to the checkpoint of Stage2')
    parser.add_argument('--seed', type=int, default=0, help='seed for generations')
    parser.add_argument('--control_flag', action='store_true', help='Whether to use control signal or not')
    parser.add_argument('--pose_yaw', type=float, default=0.25, help='range from -1 to 1 (-90 ~ 90 angles)')
    parser.add_argument('--pose_pitch', type=float, default=0, help='range from -1 to 1 (-90 ~ 90 angles)')
    parser.add_argument('--pose_roll', type=float, default=0, help='range from -1 to 1 (-90 ~ 90 angles)')
    parser.add_argument('--face_location', type=float, default=0.5, help='range from 0 to 1 (from left to right)')
    parser.add_argument('--pose_driven_path', type=str, default='xxx', help='path to pose numpy, shape is (T, 3). You can check the following code https://github.com/liutaocode/talking_face_preprocessing to extract the yaw, pitch and roll.')
    parser.add_argument('--face_scale', type=float, default=0.5, help='range from 0 to 1 (from small to large)')
    parser.add_argument('--step_T', type=int, default=50, help='Step T for diffusion denoising process')
    parser.add_argument('--image_size', type=int, default=256, help='Size of the image. Do not change.')
    parser.add_argument('--device', type=str, default='cuda:0', help='Device for computation')
    parser.add_argument('--motion_dim', type=int, default=20, help='Dimension of motion. Do not change.')
    parser.add_argument('--decoder_layers', type=int, default=2, help='Layer number for the conformer.')
    parser.add_argument('--face_sr', action='store_true', help='Face super-resolution (Optional). Please install GFPGAN first')



    args = parser.parse_args()

    main(args)