File size: 7,241 Bytes
f1ea451
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import torch
from torch import nn
from model.base import BaseModule
from espnet.nets.pytorch_backend.conformer.encoder import Encoder as ConformerEncoder
import torch.nn.functional as F

class LSTM(nn.Module):
    def __init__(self, motion_dim, output_dim, num_layers=2, hidden_dim=128):
        super().__init__()
        self.lstm = nn.LSTM(input_size=motion_dim, hidden_size=hidden_dim,
                            num_layers=num_layers, batch_first=True)
        self.fc = nn.Linear(hidden_dim, output_dim)

    def forward(self, x):
        x, _ = self.lstm(x)
        return self.fc(x)

class DiffusionPredictor(BaseModule):
    def __init__(self, conf):
        super(DiffusionPredictor, self).__init__()
        
        self.infer_type = conf.infer_type
        
        self.initialize_layers(conf)
        print(f'infer_type: {self.infer_type}')
        
    def create_conformer_encoder(self, attention_dim, num_blocks):
        return ConformerEncoder(
            idim=0, attention_dim=attention_dim, attention_heads=2, linear_units=attention_dim,
            num_blocks=num_blocks, input_layer=None, dropout_rate=0.2, positional_dropout_rate=0.2,
            attention_dropout_rate=0.2, normalize_before=False, concat_after=False,
            positionwise_layer_type="linear", positionwise_conv_kernel_size=3, macaron_style=True,
            pos_enc_layer_type="rel_pos", selfattention_layer_type="rel_selfattn", use_cnn_module=True,
            cnn_module_kernel=13)

    def initialize_layers(self,  conf, mfcc_dim=39, hubert_dim=1024, speech_layers=4, speech_dim=512, decoder_dim=1024, motion_start_dim=512, HAL_layers=25):

        self.conf = conf
        # Speech downsampling
        if self.infer_type.startswith('mfcc'):
            # from 100 hz to 25 hz
            self.down_sample1 = nn.Conv1d(mfcc_dim, 256, kernel_size=3, stride=2, padding=1)
            self.down_sample2 = nn.Conv1d(256, speech_dim, kernel_size=3, stride=2, padding=1)
        elif self.infer_type.startswith('hubert'):
            # from 50 hz to 25 hz
            self.down_sample1 = nn.Conv1d(hubert_dim, speech_dim, kernel_size=3, stride=2, padding=1)
            
            self.weights = nn.Parameter(torch.zeros(HAL_layers))
            self.speech_encoder = self.create_conformer_encoder(speech_dim, speech_layers)
        else:
            print('infer_type not supported')
            
        # Encoders & Deocoders
        self.coarse_decoder = self.create_conformer_encoder(decoder_dim, conf.decoder_layers)

        # LSTM predictors for Variance Adapter
        if self.infer_type != 'hubert_audio_only':
            self.pose_predictor = LSTM(speech_dim, 3)
            self.pose_encoder = LSTM(3, speech_dim)

        if 'full_control' in self.infer_type:
            self.location_predictor = LSTM(speech_dim, 1)
            self.location_encoder = LSTM(1, speech_dim)
            self.face_scale_predictor = LSTM(speech_dim, 1)
            self.face_scale_encoder = LSTM(1, speech_dim)
        
        # Linear transformations
        self.init_code_proj = nn.Sequential(nn.Linear(motion_start_dim, 128))
        self.noisy_encoder = nn.Sequential(nn.Linear(conf.motion_dim, 128))
        self.t_encoder = nn.Sequential(nn.Linear(1, 128))
        self.encoder_direction_code = nn.Linear(conf.motion_dim, 128)
        
        self.out_proj = nn.Linear(decoder_dim, conf.motion_dim)

    
    def forward(self, initial_code, direction_code, seq_input_vector, face_location, face_scale, yaw_pitch_roll, noisy_x, t_emb, control_flag=False):
        
        if self.infer_type.startswith('mfcc'):
            x = self.mfcc_speech_downsample(seq_input_vector)
        elif self.infer_type.startswith('hubert'):
            norm_weights = F.softmax(self.weights, dim=-1)
            weighted_feature = (norm_weights.unsqueeze(0).unsqueeze(-1).unsqueeze(-1) * seq_input_vector).sum(dim=1)
            x = self.down_sample1(weighted_feature.transpose(1,2)).transpose(1,2)
            x, _ = self.speech_encoder(x, masks=None)
        predicted_location, predicted_scale, predicted_pose = face_location, face_scale, yaw_pitch_roll
        if self.infer_type != 'hubert_audio_only':
            print(f'pose controllable. control_flag: {control_flag}')
            x, predicted_location, predicted_scale, predicted_pose = self.adjust_features(x, face_location, face_scale, yaw_pitch_roll, control_flag)
        concatenated_features = self.combine_features(x, initial_code, direction_code, noisy_x, t_emb) # initial_code and direction_code serve as a motion guide extracted from the reference image. This aims to tell the model what the starting motion should be.
        outputs = self.decode_features(concatenated_features)
        return outputs, predicted_location, predicted_scale, predicted_pose

    def mfcc_speech_downsample(self, seq_input_vector):
        x = self.down_sample1(seq_input_vector.transpose(1,2))
        return self.down_sample2(x).transpose(1,2)

    def adjust_features(self, x, face_location, face_scale, yaw_pitch_roll, control_flag):
        predicted_location,  predicted_scale = 0, 0
        if 'full_control' in self.infer_type:
            print(f'full controllable. control_flag: {control_flag}')
            x_residual, predicted_location = self.adjust_location(x, face_location, control_flag)
            x = x + x_residual

            x_residual, predicted_scale = self.adjust_scale(x, face_scale, control_flag)
            x = x + x_residual

        x_residual, predicted_pose= self.adjust_pose(x, yaw_pitch_roll, control_flag)
        x = x + x_residual
        return x, predicted_location, predicted_scale, predicted_pose

    def adjust_location(self, x, face_location, control_flag):
        if control_flag:
            predicted_location = face_location
        else:
            predicted_location = self.location_predictor(x)
        return self.location_encoder(predicted_location), predicted_location

    def adjust_scale(self, x, face_scale, control_flag):
        if control_flag:
            predicted_face_scale = face_scale
        else:
            predicted_face_scale = self.face_scale_predictor(x)
        return self.face_scale_encoder(predicted_face_scale), predicted_face_scale

    def adjust_pose(self, x, yaw_pitch_roll, control_flag):
        if control_flag:
            predicted_pose = yaw_pitch_roll
        else:
            predicted_pose = self.pose_predictor(x)
        return self.pose_encoder(predicted_pose), predicted_pose

    def combine_features(self, x, initial_code, direction_code, noisy_x, t_emb):
        init_code_proj = self.init_code_proj(initial_code).unsqueeze(1).repeat(1, x.size(1), 1)
        noisy_feature = self.noisy_encoder(noisy_x)
        t_emb_feature = self.t_encoder(t_emb.unsqueeze(1).float()).unsqueeze(1).repeat(1, x.size(1), 1)
        direction_code_feature = self.encoder_direction_code(direction_code).unsqueeze(1).repeat(1, x.size(1), 1)
        return torch.cat((x, direction_code_feature, init_code_proj, noisy_feature, t_emb_feature), dim=-1)

    def decode_features(self, concatenated_features):
        outputs, _ = self.coarse_decoder(concatenated_features, masks=None)
        return self.out_proj(outputs)