Spaces:
Paused
Paused
File size: 7,241 Bytes
f1ea451 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
import torch
from torch import nn
from model.base import BaseModule
from espnet.nets.pytorch_backend.conformer.encoder import Encoder as ConformerEncoder
import torch.nn.functional as F
class LSTM(nn.Module):
def __init__(self, motion_dim, output_dim, num_layers=2, hidden_dim=128):
super().__init__()
self.lstm = nn.LSTM(input_size=motion_dim, hidden_size=hidden_dim,
num_layers=num_layers, batch_first=True)
self.fc = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
x, _ = self.lstm(x)
return self.fc(x)
class DiffusionPredictor(BaseModule):
def __init__(self, conf):
super(DiffusionPredictor, self).__init__()
self.infer_type = conf.infer_type
self.initialize_layers(conf)
print(f'infer_type: {self.infer_type}')
def create_conformer_encoder(self, attention_dim, num_blocks):
return ConformerEncoder(
idim=0, attention_dim=attention_dim, attention_heads=2, linear_units=attention_dim,
num_blocks=num_blocks, input_layer=None, dropout_rate=0.2, positional_dropout_rate=0.2,
attention_dropout_rate=0.2, normalize_before=False, concat_after=False,
positionwise_layer_type="linear", positionwise_conv_kernel_size=3, macaron_style=True,
pos_enc_layer_type="rel_pos", selfattention_layer_type="rel_selfattn", use_cnn_module=True,
cnn_module_kernel=13)
def initialize_layers(self, conf, mfcc_dim=39, hubert_dim=1024, speech_layers=4, speech_dim=512, decoder_dim=1024, motion_start_dim=512, HAL_layers=25):
self.conf = conf
# Speech downsampling
if self.infer_type.startswith('mfcc'):
# from 100 hz to 25 hz
self.down_sample1 = nn.Conv1d(mfcc_dim, 256, kernel_size=3, stride=2, padding=1)
self.down_sample2 = nn.Conv1d(256, speech_dim, kernel_size=3, stride=2, padding=1)
elif self.infer_type.startswith('hubert'):
# from 50 hz to 25 hz
self.down_sample1 = nn.Conv1d(hubert_dim, speech_dim, kernel_size=3, stride=2, padding=1)
self.weights = nn.Parameter(torch.zeros(HAL_layers))
self.speech_encoder = self.create_conformer_encoder(speech_dim, speech_layers)
else:
print('infer_type not supported')
# Encoders & Deocoders
self.coarse_decoder = self.create_conformer_encoder(decoder_dim, conf.decoder_layers)
# LSTM predictors for Variance Adapter
if self.infer_type != 'hubert_audio_only':
self.pose_predictor = LSTM(speech_dim, 3)
self.pose_encoder = LSTM(3, speech_dim)
if 'full_control' in self.infer_type:
self.location_predictor = LSTM(speech_dim, 1)
self.location_encoder = LSTM(1, speech_dim)
self.face_scale_predictor = LSTM(speech_dim, 1)
self.face_scale_encoder = LSTM(1, speech_dim)
# Linear transformations
self.init_code_proj = nn.Sequential(nn.Linear(motion_start_dim, 128))
self.noisy_encoder = nn.Sequential(nn.Linear(conf.motion_dim, 128))
self.t_encoder = nn.Sequential(nn.Linear(1, 128))
self.encoder_direction_code = nn.Linear(conf.motion_dim, 128)
self.out_proj = nn.Linear(decoder_dim, conf.motion_dim)
def forward(self, initial_code, direction_code, seq_input_vector, face_location, face_scale, yaw_pitch_roll, noisy_x, t_emb, control_flag=False):
if self.infer_type.startswith('mfcc'):
x = self.mfcc_speech_downsample(seq_input_vector)
elif self.infer_type.startswith('hubert'):
norm_weights = F.softmax(self.weights, dim=-1)
weighted_feature = (norm_weights.unsqueeze(0).unsqueeze(-1).unsqueeze(-1) * seq_input_vector).sum(dim=1)
x = self.down_sample1(weighted_feature.transpose(1,2)).transpose(1,2)
x, _ = self.speech_encoder(x, masks=None)
predicted_location, predicted_scale, predicted_pose = face_location, face_scale, yaw_pitch_roll
if self.infer_type != 'hubert_audio_only':
print(f'pose controllable. control_flag: {control_flag}')
x, predicted_location, predicted_scale, predicted_pose = self.adjust_features(x, face_location, face_scale, yaw_pitch_roll, control_flag)
concatenated_features = self.combine_features(x, initial_code, direction_code, noisy_x, t_emb) # initial_code and direction_code serve as a motion guide extracted from the reference image. This aims to tell the model what the starting motion should be.
outputs = self.decode_features(concatenated_features)
return outputs, predicted_location, predicted_scale, predicted_pose
def mfcc_speech_downsample(self, seq_input_vector):
x = self.down_sample1(seq_input_vector.transpose(1,2))
return self.down_sample2(x).transpose(1,2)
def adjust_features(self, x, face_location, face_scale, yaw_pitch_roll, control_flag):
predicted_location, predicted_scale = 0, 0
if 'full_control' in self.infer_type:
print(f'full controllable. control_flag: {control_flag}')
x_residual, predicted_location = self.adjust_location(x, face_location, control_flag)
x = x + x_residual
x_residual, predicted_scale = self.adjust_scale(x, face_scale, control_flag)
x = x + x_residual
x_residual, predicted_pose= self.adjust_pose(x, yaw_pitch_roll, control_flag)
x = x + x_residual
return x, predicted_location, predicted_scale, predicted_pose
def adjust_location(self, x, face_location, control_flag):
if control_flag:
predicted_location = face_location
else:
predicted_location = self.location_predictor(x)
return self.location_encoder(predicted_location), predicted_location
def adjust_scale(self, x, face_scale, control_flag):
if control_flag:
predicted_face_scale = face_scale
else:
predicted_face_scale = self.face_scale_predictor(x)
return self.face_scale_encoder(predicted_face_scale), predicted_face_scale
def adjust_pose(self, x, yaw_pitch_roll, control_flag):
if control_flag:
predicted_pose = yaw_pitch_roll
else:
predicted_pose = self.pose_predictor(x)
return self.pose_encoder(predicted_pose), predicted_pose
def combine_features(self, x, initial_code, direction_code, noisy_x, t_emb):
init_code_proj = self.init_code_proj(initial_code).unsqueeze(1).repeat(1, x.size(1), 1)
noisy_feature = self.noisy_encoder(noisy_x)
t_emb_feature = self.t_encoder(t_emb.unsqueeze(1).float()).unsqueeze(1).repeat(1, x.size(1), 1)
direction_code_feature = self.encoder_direction_code(direction_code).unsqueeze(1).repeat(1, x.size(1), 1)
return torch.cat((x, direction_code_feature, init_code_proj, noisy_feature, t_emb_feature), dim=-1)
def decode_features(self, concatenated_features):
outputs, _ = self.coarse_decoder(concatenated_features, masks=None)
return self.out_proj(outputs) |