talking_image / dataset.py
Delik's picture
Upload 32 files
f1ea451 verified
raw
history blame
9.73 kB
import os
import librosa
from PIL import Image
from torchvision import transforms
import python_speech_features
import random
import os
import numpy as np
from tqdm import tqdm
import torchvision
import torchvision.transforms as transforms
from PIL import Image
class LatentDataLoader(object):
def __init__(
self,
window_size,
frame_jpgs,
lmd_feats_prefix,
audio_prefix,
raw_audio_prefix,
motion_latents_prefix,
pose_prefix,
db_name,
video_fps=25,
audio_hz=50,
size=256,
mfcc_mode=False,
):
self.window_size = window_size
self.lmd_feats_prefix = lmd_feats_prefix
self.audio_prefix = audio_prefix
self.pose_prefix = pose_prefix
self.video_fps = video_fps
self.audio_hz = audio_hz
self.db_name = db_name
self.raw_audio_prefix = raw_audio_prefix
self.mfcc_mode = mfcc_mode
self.transform = torchvision.transforms.Compose([
transforms.Resize((size, size)),
transforms.ToTensor(),
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))]
)
self.data = []
for db_name in [ 'VoxCeleb2', 'HDTF' ]:
db_png_path = os.path.join(frame_jpgs, db_name)
for clip_name in tqdm(os.listdir(db_png_path)):
item_dict = dict()
item_dict['clip_name'] = clip_name
item_dict['frame_count'] = len(list(os.listdir(os.path.join(frame_jpgs, db_name, clip_name))))
item_dict['hubert_path'] = os.path.join(audio_prefix, db_name, clip_name +".npy")
item_dict['wav_path'] = os.path.join(raw_audio_prefix, db_name, clip_name +".wav")
item_dict['yaw_pitch_roll_path'] = os.path.join(pose_prefix, db_name, 'raw_videos_pose_yaw_pitch_roll', clip_name +".npy")
if not os.path.exists(item_dict['yaw_pitch_roll_path']):
print(f"{db_name}'s {clip_name} miss yaw_pitch_roll_path")
continue
item_dict['yaw_pitch_roll'] = np.load(item_dict['yaw_pitch_roll_path'])
item_dict['yaw_pitch_roll'] = np.clip(item_dict['yaw_pitch_roll'], -90, 90) / 90.0
if not os.path.exists(item_dict['wav_path']):
print(f"{db_name}'s {clip_name} miss wav_path")
continue
if not os.path.exists(item_dict['hubert_path']):
print(f"{db_name}'s {clip_name} miss hubert_path")
continue
if self.mfcc_mode:
wav, sr = librosa.load(item_dict['wav_path'], sr=16000)
input_values = python_speech_features.mfcc(signal=wav,samplerate=sr,numcep=13,winlen=0.025,winstep=0.01)
d_mfcc_feat = python_speech_features.base.delta(input_values, 1)
d_mfcc_feat2 = python_speech_features.base.delta(input_values, 2)
input_values = np.hstack((input_values, d_mfcc_feat, d_mfcc_feat2))
item_dict['hubert_obj'] = input_values
else:
item_dict['hubert_obj'] = np.load(item_dict['hubert_path'], mmap_mode='r')
item_dict['lmd_path'] = os.path.join(lmd_feats_prefix, db_name, clip_name +".txt")
item_dict['lmd_obj_full'] = self.read_landmark_info(item_dict['lmd_path'], upper_face=False)
motion_start_path = os.path.join(motion_latents_prefix, db_name, 'motions', clip_name +".npy")
motion_direction_path = os.path.join(motion_latents_prefix, db_name, 'directions', clip_name +".npy")
if not os.path.exists(motion_start_path):
print(f"{db_name}'s {clip_name} miss motion_start_path")
continue
if not os.path.exists(motion_direction_path):
print(f"{db_name}'s {clip_name} miss motion_direction_path")
continue
item_dict['motion_start_obj'] = np.load(motion_start_path)
item_dict['motion_direction_obj'] = np.load(motion_direction_path)
if self.mfcc_mode:
min_len = min(
item_dict['lmd_obj_full'].shape[0],
item_dict['yaw_pitch_roll'].shape[0],
item_dict['motion_start_obj'].shape[0],
item_dict['motion_direction_obj'].shape[0],
int(item_dict['hubert_obj'].shape[0]/4),
item_dict['frame_count']
)
item_dict['frame_count'] = min_len
item_dict['hubert_obj'] = item_dict['hubert_obj'][:min_len*4,:]
else:
min_len = min(
item_dict['lmd_obj_full'].shape[0],
item_dict['yaw_pitch_roll'].shape[0],
item_dict['motion_start_obj'].shape[0],
item_dict['motion_direction_obj'].shape[0],
int(item_dict['hubert_obj'].shape[1]/2),
item_dict['frame_count']
)
item_dict['frame_count'] = min_len
item_dict['hubert_obj'] = item_dict['hubert_obj'][:, :min_len*2, :]
if min_len < self.window_size * self.video_fps + 5:
continue
print('Db count:', len(self.data))
def get_single_image(self, image_path):
img_source = Image.open(image_path).convert('RGB')
img_source = self.transform(img_source)
return img_source
def get_multiple_ranges(self, lists, multi_ranges):
# Ensure that multi_ranges is a list of tuples
if not all(isinstance(item, tuple) and len(item) == 2 for item in multi_ranges):
raise ValueError("multi_ranges must be a list of (start, end) tuples with exactly two elements each")
extracted_elements = [lists[start:end] for start, end in multi_ranges]
flat_list = [item for sublist in extracted_elements for item in sublist]
return flat_list
def read_landmark_info(self, lmd_path, upper_face=True):
with open(lmd_path, 'r') as file:
lmd_lines = file.readlines()
lmd_lines.sort()
total_lmd_obj = []
for i, line in enumerate(lmd_lines):
# Split the coordinates and filter out any empty strings
coords = [c for c in line.strip().split(' ') if c]
coords = coords[1:] # do not include the file name in the first row
lmd_obj = []
if upper_face:
# Ensure that the coordinates are parsed as integers
for coord_pair in self.get_multiple_ranges(coords, [(0, 3), (14, 27), (36, 48)]): # 28个
x, y = coord_pair.split('_')
lmd_obj.append((int(x)/512, int(y)/512))
else:
for coord_pair in coords:
x, y = coord_pair.split('_')
lmd_obj.append((int(x)/512, int(y)/512))
total_lmd_obj.append(lmd_obj)
return np.array(total_lmd_obj, dtype=np.float32)
def calculate_face_height(self, landmarks):
forehead_center = (landmarks[ :, 21, :] + landmarks[:, 22, :]) / 2
chin_bottom = landmarks[:, 8, :]
distances = np.linalg.norm(forehead_center - chin_bottom, axis=1, keepdims=True)
return distances
def __getitem__(self, index):
data_item = self.data[index]
hubert_obj = data_item['hubert_obj']
frame_count = data_item['frame_count']
lmd_obj_full = data_item['lmd_obj_full']
yaw_pitch_roll = data_item['yaw_pitch_roll']
motion_start_obj = data_item['motion_start_obj']
motion_direction_obj = data_item['motion_direction_obj']
frame_end_index = random.randint(self.window_size * self.video_fps + 1, frame_count - 1)
frame_start_index = frame_end_index - self.window_size * self.video_fps
frame_hint_index = frame_start_index - 1
audio_start_index = int(frame_start_index * (self.audio_hz / self.video_fps))
audio_end_index = int(frame_end_index * (self.audio_hz / self.video_fps))
if self.mfcc_mode:
audio_feats = hubert_obj[audio_start_index:audio_end_index, :]
else:
audio_feats = hubert_obj[:, audio_start_index:audio_end_index, :]
lmd_obj_full = lmd_obj_full[frame_hint_index:frame_end_index, :]
yaw_pitch_roll = yaw_pitch_roll[frame_start_index:frame_end_index, :]
motion_start = motion_start_obj[frame_hint_index]
motion_direction_start = motion_direction_obj[frame_hint_index]
motion_direction = motion_direction_obj[frame_start_index:frame_end_index, :]
return {
'motion_start': motion_start,
'motion_direction': motion_direction,
'audio_feats': audio_feats,
'face_location': lmd_obj_full[1:, 30, 0], # '1:' means taking the first frame as the driven frame. '30' is the noise location, '0' means x coordinate
'face_scale': self.calculate_face_height(lmd_obj_full[1:,:,:]),
'yaw_pitch_roll': yaw_pitch_roll,
'motion_direction_start': motion_direction_start,
}
def __len__(self):
return len(self.data)