Spaces:
Paused
Paused
from torch import nn | |
import torch.nn.functional as F | |
import torch | |
class AntiAliasInterpolation2d(nn.Module): | |
""" | |
Band-limited downsampling, for better preservation of the input signal. | |
""" | |
def __init__(self, channels, scale): | |
super(AntiAliasInterpolation2d, self).__init__() | |
sigma = (1 / scale - 1) / 2 | |
kernel_size = 2 * round(sigma * 4) + 1 | |
self.ka = kernel_size // 2 | |
self.kb = self.ka - 1 if kernel_size % 2 == 0 else self.ka | |
kernel_size = [kernel_size, kernel_size] | |
sigma = [sigma, sigma] | |
# The gaussian kernel is the product of the | |
# gaussian function of each dimension. | |
kernel = 1 | |
meshgrids = torch.meshgrid( | |
[ | |
torch.arange(size, dtype=torch.float32) | |
for size in kernel_size | |
] | |
) | |
for size, std, mgrid in zip(kernel_size, sigma, meshgrids): | |
mean = (size - 1) / 2 | |
kernel *= torch.exp(-(mgrid - mean) ** 2 / (2 * std ** 2)) | |
# Make sure sum of values in gaussian kernel equals 1. | |
kernel = kernel / torch.sum(kernel) | |
# Reshape to depthwise convolutional weight | |
kernel = kernel.view(1, 1, *kernel.size()) | |
kernel = kernel.repeat(channels, *[1] * (kernel.dim() - 1)) | |
self.register_buffer('weight', kernel) | |
self.groups = channels | |
self.scale = scale | |
inv_scale = 1 / scale | |
self.int_inv_scale = int(inv_scale) | |
def forward(self, input): | |
if self.scale == 1.0: | |
return input | |
out = F.pad(input, (self.ka, self.kb, self.ka, self.kb)) | |
out = F.conv2d(out, weight=self.weight, groups=self.groups) | |
out = out[:, :, ::self.int_inv_scale, ::self.int_inv_scale] | |
return out | |