talking_image / networks /encoder.py
Delik's picture
Upload 32 files
f1ea451 verified
import math
import torch
from torch import nn
from torch.nn import functional as F
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
return F.leaky_relu(input + bias, negative_slope) * scale
class FusedLeakyReLU(nn.Module):
def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5):
super().__init__()
self.bias = nn.Parameter(torch.zeros(1, channel, 1, 1))
self.negative_slope = negative_slope
self.scale = scale
def forward(self, input):
out = fused_leaky_relu(input, self.bias, self.negative_slope, self.scale)
return out
def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1):
_, minor, in_h, in_w = input.shape
kernel_h, kernel_w = kernel.shape
out = input.view(-1, minor, in_h, 1, in_w, 1)
out = F.pad(out, [0, up_x - 1, 0, 0, 0, up_y - 1, 0, 0])
out = out.view(-1, minor, in_h * up_y, in_w * up_x)
out = F.pad(out, [max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)])
out = out[:, :, max(-pad_y0, 0): out.shape[2] - max(-pad_y1, 0),
max(-pad_x0, 0): out.shape[3] - max(-pad_x1, 0), ]
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1])
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
out = F.conv2d(out, w)
out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1, )
return out[:, :, ::down_y, ::down_x]
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
return upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1])
def make_kernel(k):
k = torch.tensor(k, dtype=torch.float32)
if k.ndim == 1:
k = k[None, :] * k[:, None]
k /= k.sum()
return k
class Blur(nn.Module):
def __init__(self, kernel, pad, upsample_factor=1):
super().__init__()
kernel = make_kernel(kernel)
if upsample_factor > 1:
kernel = kernel * (upsample_factor ** 2)
self.register_buffer('kernel', kernel)
self.pad = pad
def forward(self, input):
return upfirdn2d(input, self.kernel, pad=self.pad)
class ScaledLeakyReLU(nn.Module):
def __init__(self, negative_slope=0.2):
super().__init__()
self.negative_slope = negative_slope
def forward(self, input):
return F.leaky_relu(input, negative_slope=self.negative_slope)
class EqualConv2d(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True):
super().__init__()
self.weight = nn.Parameter(torch.randn(out_channel, in_channel, kernel_size, kernel_size))
self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2)
self.stride = stride
self.padding = padding
if bias:
self.bias = nn.Parameter(torch.zeros(out_channel))
else:
self.bias = None
def forward(self, input):
return F.conv2d(input, self.weight * self.scale, bias=self.bias, stride=self.stride, padding=self.padding)
def __repr__(self):
return (
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},'
f' {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})'
)
class EqualLinear(nn.Module):
def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None):
super().__init__()
self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))
if bias:
self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
else:
self.bias = None
self.activation = activation
self.scale = (1 / math.sqrt(in_dim)) * lr_mul
self.lr_mul = lr_mul
def forward(self, input):
if self.activation:
out = F.linear(input, self.weight * self.scale)
out = fused_leaky_relu(out, self.bias * self.lr_mul)
else:
out = F.linear(input, self.weight * self.scale, bias=self.bias * self.lr_mul)
return out
def __repr__(self):
return (f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})')
class ConvLayer(nn.Sequential):
def __init__(
self,
in_channel,
out_channel,
kernel_size,
downsample=False,
blur_kernel=[1, 3, 3, 1],
bias=True,
activate=True,
):
layers = []
if downsample:
factor = 2
p = (len(blur_kernel) - factor) + (kernel_size - 1)
pad0 = (p + 1) // 2
pad1 = p // 2
layers.append(Blur(blur_kernel, pad=(pad0, pad1)))
stride = 2
self.padding = 0
else:
stride = 1
self.padding = kernel_size // 2
layers.append(EqualConv2d(in_channel, out_channel, kernel_size, padding=self.padding, stride=stride,
bias=bias and not activate))
if activate:
if bias:
layers.append(FusedLeakyReLU(out_channel))
else:
layers.append(ScaledLeakyReLU(0.2))
super().__init__(*layers)
class ResBlock(nn.Module):
def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1]):
super().__init__()
self.conv1 = ConvLayer(in_channel, in_channel, 3)
self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=True)
self.skip = ConvLayer(in_channel, out_channel, 1, downsample=True, activate=False, bias=False)
def forward(self, input):
out = self.conv1(input)
out = self.conv2(out)
skip = self.skip(input)
out = (out + skip) / math.sqrt(2)
return out
class WeightedSumLayer(nn.Module):
def __init__(self, num_tensors=8):
super(WeightedSumLayer, self).__init__()
self.weights = nn.Parameter(torch.randn(num_tensors))
def forward(self, tensor_list):
weights = torch.softmax(self.weights, dim=0)
weighted_sum = torch.zeros_like(tensor_list[0])
for tensor, weight in zip(tensor_list, weights):
weighted_sum += tensor * weight
return weighted_sum
class EncoderApp(nn.Module):
def __init__(self, size, w_dim=512, fusion_type=''):
super(EncoderApp, self).__init__()
channels = {
4: 512,
8: 512,
16: 512,
32: 512,
64: 256,
128: 128,
256: 64,
512: 32,
1024: 16
}
self.w_dim = w_dim
log_size = int(math.log(size, 2))
self.convs = nn.ModuleList()
self.convs.append(ConvLayer(3, channels[size], 1))
in_channel = channels[size]
for i in range(log_size, 2, -1):
out_channel = channels[2 ** (i - 1)]
self.convs.append(ResBlock(in_channel, out_channel))
in_channel = out_channel
self.convs.append(EqualConv2d(in_channel, self.w_dim, 4, padding=0, bias=False))
self.fusion_type = fusion_type
assert self.fusion_type == 'weighted_sum'
if self.fusion_type == 'weighted_sum':
print(f'HAL layer is enabled!')
self.adaptive_pool = nn.AdaptiveAvgPool2d((1, 1))
self.fc1 = EqualLinear(64, 512)
self.fc2 = EqualLinear(128, 512)
self.fc3 = EqualLinear(256, 512)
self.ws = WeightedSumLayer()
def forward(self, x):
res = []
h = x
pooled_h_lists = []
for i, conv in enumerate(self.convs):
h = conv(h)
if self.fusion_type == 'weighted_sum':
pooled_h = self.adaptive_pool(h).view(x.size(0), -1)
if i == 0:
pooled_h_lists.append(self.fc1(pooled_h))
elif i == 1:
pooled_h_lists.append(self.fc2(pooled_h))
elif i == 2:
pooled_h_lists.append(self.fc3(pooled_h))
else:
pooled_h_lists.append(pooled_h)
res.append(h)
if self.fusion_type == 'weighted_sum':
last_layer = self.ws(pooled_h_lists)
else:
last_layer = res[-1].squeeze(-1).squeeze(-1)
layer_features = res[::-1][2:]
return last_layer, layer_features
class DecouplingModel(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(DecouplingModel, self).__init__()
# identity_excluded_net is called identity encoder in the paper
self.identity_net = nn.Sequential(
nn.Linear(input_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, output_dim)
)
self.identity_net_density = nn.Sequential(
nn.Linear(input_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, output_dim)
)
# identity_excluded_net is called motion encoder in the paper
self.identity_excluded_net = nn.Sequential(
nn.Linear(input_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, output_dim)
)
def forward(self, x):
id_, id_rm = self.identity_net(x), self.identity_excluded_net(x)
id_density = self.identity_net_density(id_)
return id_, id_rm, id_density
class Encoder(nn.Module):
def __init__(self, size, dim=512, dim_motion=20, weighted_sum=False):
super(Encoder, self).__init__()
# image encoder
self.net_app = EncoderApp(size, dim, weighted_sum)
# decouping network
self.net_decouping = DecouplingModel(dim, dim, dim)
# part of the motion encoder
fc = [EqualLinear(dim, dim)]
for i in range(3):
fc.append(EqualLinear(dim, dim))
fc.append(EqualLinear(dim, dim_motion))
self.fc = nn.Sequential(*fc)
def enc_app(self, x):
h_source = self.net_app(x)
return h_source
def enc_motion(self, x):
h, _ = self.net_app(x)
h_motion = self.fc(h)
return h_motion
def encode_image_obj(self, image_obj):
feat, _ = self.net_app(image_obj)
id_emb, idrm_emb, id_density_emb = self.net_decouping(feat)
return id_emb, idrm_emb, id_density_emb
def forward(self, input_source, input_target, input_face, input_aug):
if input_target is not None:
h_source, feats = self.net_app(input_source)
h_target, _ = self.net_app(input_target)
h_face, _ = self.net_app(input_face)
h_aug, _ = self.net_app(input_aug)
h_source_id_emb, h_source_idrm_emb, h_source_id_density_emb = self.net_decouping(h_source)
h_target_id_emb, h_target_idrm_emb, h_target_id_density_emb = self.net_decouping(h_target)
h_face_id_emb, h_face_idrm_emb, h_face_id_density_emb = self.net_decouping(h_face)
h_aug_id_emb, h_aug_idrm_emb, h_aug_id_density_emb = self.net_decouping(h_aug)
h_target_motion_target = self.fc(h_target_idrm_emb)
h_another_face_target = self.fc(h_face_idrm_emb)
else:
h_source, feats = self.net_app(input_source)
return {'h_source':h_source, 'h_motion':h_target_motion_target, 'feats':feats, 'h_another_face_target':h_another_face_target, 'h_face':h_face, \
'h_source_id_emb':h_source_id_emb, 'h_source_idrm_emb':h_source_idrm_emb, 'h_source_id_density_emb':h_source_id_density_emb, \
'h_target_id_emb':h_target_id_emb, 'h_target_idrm_emb':h_target_idrm_emb, 'h_target_id_density_emb':h_target_id_density_emb, \
'h_face_id_emb':h_face_id_emb, 'h_face_idrm_emb':h_face_idrm_emb, 'h_face_id_density_emb':h_face_id_density_emb, \
'h_aug_id_emb':h_aug_id_emb, 'h_aug_idrm_emb':h_aug_idrm_emb ,'h_aug_id_density_emb':h_aug_id_density_emb, \
}