Spaces:
Paused
Paused
import math | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5): | |
return F.leaky_relu(input + bias, negative_slope) * scale | |
class FusedLeakyReLU(nn.Module): | |
def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5): | |
super().__init__() | |
self.bias = nn.Parameter(torch.zeros(1, channel, 1, 1)) | |
self.negative_slope = negative_slope | |
self.scale = scale | |
def forward(self, input): | |
out = fused_leaky_relu(input, self.bias, self.negative_slope, self.scale) | |
return out | |
def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1): | |
_, minor, in_h, in_w = input.shape | |
kernel_h, kernel_w = kernel.shape | |
out = input.view(-1, minor, in_h, 1, in_w, 1) | |
out = F.pad(out, [0, up_x - 1, 0, 0, 0, up_y - 1, 0, 0]) | |
out = out.view(-1, minor, in_h * up_y, in_w * up_x) | |
out = F.pad(out, [max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]) | |
out = out[:, :, max(-pad_y0, 0): out.shape[2] - max(-pad_y1, 0), | |
max(-pad_x0, 0): out.shape[3] - max(-pad_x1, 0), ] | |
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]) | |
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w) | |
out = F.conv2d(out, w) | |
out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1, | |
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1, ) | |
return out[:, :, ::down_y, ::down_x] | |
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)): | |
return upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1]) | |
def make_kernel(k): | |
k = torch.tensor(k, dtype=torch.float32) | |
if k.ndim == 1: | |
k = k[None, :] * k[:, None] | |
k /= k.sum() | |
return k | |
class Blur(nn.Module): | |
def __init__(self, kernel, pad, upsample_factor=1): | |
super().__init__() | |
kernel = make_kernel(kernel) | |
if upsample_factor > 1: | |
kernel = kernel * (upsample_factor ** 2) | |
self.register_buffer('kernel', kernel) | |
self.pad = pad | |
def forward(self, input): | |
return upfirdn2d(input, self.kernel, pad=self.pad) | |
class ScaledLeakyReLU(nn.Module): | |
def __init__(self, negative_slope=0.2): | |
super().__init__() | |
self.negative_slope = negative_slope | |
def forward(self, input): | |
return F.leaky_relu(input, negative_slope=self.negative_slope) | |
class EqualConv2d(nn.Module): | |
def __init__(self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True): | |
super().__init__() | |
self.weight = nn.Parameter(torch.randn(out_channel, in_channel, kernel_size, kernel_size)) | |
self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2) | |
self.stride = stride | |
self.padding = padding | |
if bias: | |
self.bias = nn.Parameter(torch.zeros(out_channel)) | |
else: | |
self.bias = None | |
def forward(self, input): | |
return F.conv2d(input, self.weight * self.scale, bias=self.bias, stride=self.stride, padding=self.padding) | |
def __repr__(self): | |
return ( | |
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},' | |
f' {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})' | |
) | |
class EqualLinear(nn.Module): | |
def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None): | |
super().__init__() | |
self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul)) | |
if bias: | |
self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init)) | |
else: | |
self.bias = None | |
self.activation = activation | |
self.scale = (1 / math.sqrt(in_dim)) * lr_mul | |
self.lr_mul = lr_mul | |
def forward(self, input): | |
if self.activation: | |
out = F.linear(input, self.weight * self.scale) | |
out = fused_leaky_relu(out, self.bias * self.lr_mul) | |
else: | |
out = F.linear(input, self.weight * self.scale, bias=self.bias * self.lr_mul) | |
return out | |
def __repr__(self): | |
return (f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})') | |
class ConvLayer(nn.Sequential): | |
def __init__( | |
self, | |
in_channel, | |
out_channel, | |
kernel_size, | |
downsample=False, | |
blur_kernel=[1, 3, 3, 1], | |
bias=True, | |
activate=True, | |
): | |
layers = [] | |
if downsample: | |
factor = 2 | |
p = (len(blur_kernel) - factor) + (kernel_size - 1) | |
pad0 = (p + 1) // 2 | |
pad1 = p // 2 | |
layers.append(Blur(blur_kernel, pad=(pad0, pad1))) | |
stride = 2 | |
self.padding = 0 | |
else: | |
stride = 1 | |
self.padding = kernel_size // 2 | |
layers.append(EqualConv2d(in_channel, out_channel, kernel_size, padding=self.padding, stride=stride, | |
bias=bias and not activate)) | |
if activate: | |
if bias: | |
layers.append(FusedLeakyReLU(out_channel)) | |
else: | |
layers.append(ScaledLeakyReLU(0.2)) | |
super().__init__(*layers) | |
class ResBlock(nn.Module): | |
def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1]): | |
super().__init__() | |
self.conv1 = ConvLayer(in_channel, in_channel, 3) | |
self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=True) | |
self.skip = ConvLayer(in_channel, out_channel, 1, downsample=True, activate=False, bias=False) | |
def forward(self, input): | |
out = self.conv1(input) | |
out = self.conv2(out) | |
skip = self.skip(input) | |
out = (out + skip) / math.sqrt(2) | |
return out | |
class WeightedSumLayer(nn.Module): | |
def __init__(self, num_tensors=8): | |
super(WeightedSumLayer, self).__init__() | |
self.weights = nn.Parameter(torch.randn(num_tensors)) | |
def forward(self, tensor_list): | |
weights = torch.softmax(self.weights, dim=0) | |
weighted_sum = torch.zeros_like(tensor_list[0]) | |
for tensor, weight in zip(tensor_list, weights): | |
weighted_sum += tensor * weight | |
return weighted_sum | |
class EncoderApp(nn.Module): | |
def __init__(self, size, w_dim=512, fusion_type=''): | |
super(EncoderApp, self).__init__() | |
channels = { | |
4: 512, | |
8: 512, | |
16: 512, | |
32: 512, | |
64: 256, | |
128: 128, | |
256: 64, | |
512: 32, | |
1024: 16 | |
} | |
self.w_dim = w_dim | |
log_size = int(math.log(size, 2)) | |
self.convs = nn.ModuleList() | |
self.convs.append(ConvLayer(3, channels[size], 1)) | |
in_channel = channels[size] | |
for i in range(log_size, 2, -1): | |
out_channel = channels[2 ** (i - 1)] | |
self.convs.append(ResBlock(in_channel, out_channel)) | |
in_channel = out_channel | |
self.convs.append(EqualConv2d(in_channel, self.w_dim, 4, padding=0, bias=False)) | |
self.fusion_type = fusion_type | |
assert self.fusion_type == 'weighted_sum' | |
if self.fusion_type == 'weighted_sum': | |
print(f'HAL layer is enabled!') | |
self.adaptive_pool = nn.AdaptiveAvgPool2d((1, 1)) | |
self.fc1 = EqualLinear(64, 512) | |
self.fc2 = EqualLinear(128, 512) | |
self.fc3 = EqualLinear(256, 512) | |
self.ws = WeightedSumLayer() | |
def forward(self, x): | |
res = [] | |
h = x | |
pooled_h_lists = [] | |
for i, conv in enumerate(self.convs): | |
h = conv(h) | |
if self.fusion_type == 'weighted_sum': | |
pooled_h = self.adaptive_pool(h).view(x.size(0), -1) | |
if i == 0: | |
pooled_h_lists.append(self.fc1(pooled_h)) | |
elif i == 1: | |
pooled_h_lists.append(self.fc2(pooled_h)) | |
elif i == 2: | |
pooled_h_lists.append(self.fc3(pooled_h)) | |
else: | |
pooled_h_lists.append(pooled_h) | |
res.append(h) | |
if self.fusion_type == 'weighted_sum': | |
last_layer = self.ws(pooled_h_lists) | |
else: | |
last_layer = res[-1].squeeze(-1).squeeze(-1) | |
layer_features = res[::-1][2:] | |
return last_layer, layer_features | |
class DecouplingModel(nn.Module): | |
def __init__(self, input_dim, hidden_dim, output_dim): | |
super(DecouplingModel, self).__init__() | |
# identity_excluded_net is called identity encoder in the paper | |
self.identity_net = nn.Sequential( | |
nn.Linear(input_dim, hidden_dim), | |
nn.ReLU(), | |
nn.Linear(hidden_dim, output_dim) | |
) | |
self.identity_net_density = nn.Sequential( | |
nn.Linear(input_dim, hidden_dim), | |
nn.ReLU(), | |
nn.Linear(hidden_dim, output_dim) | |
) | |
# identity_excluded_net is called motion encoder in the paper | |
self.identity_excluded_net = nn.Sequential( | |
nn.Linear(input_dim, hidden_dim), | |
nn.ReLU(), | |
nn.Linear(hidden_dim, output_dim) | |
) | |
def forward(self, x): | |
id_, id_rm = self.identity_net(x), self.identity_excluded_net(x) | |
id_density = self.identity_net_density(id_) | |
return id_, id_rm, id_density | |
class Encoder(nn.Module): | |
def __init__(self, size, dim=512, dim_motion=20, weighted_sum=False): | |
super(Encoder, self).__init__() | |
# image encoder | |
self.net_app = EncoderApp(size, dim, weighted_sum) | |
# decouping network | |
self.net_decouping = DecouplingModel(dim, dim, dim) | |
# part of the motion encoder | |
fc = [EqualLinear(dim, dim)] | |
for i in range(3): | |
fc.append(EqualLinear(dim, dim)) | |
fc.append(EqualLinear(dim, dim_motion)) | |
self.fc = nn.Sequential(*fc) | |
def enc_app(self, x): | |
h_source = self.net_app(x) | |
return h_source | |
def enc_motion(self, x): | |
h, _ = self.net_app(x) | |
h_motion = self.fc(h) | |
return h_motion | |
def encode_image_obj(self, image_obj): | |
feat, _ = self.net_app(image_obj) | |
id_emb, idrm_emb, id_density_emb = self.net_decouping(feat) | |
return id_emb, idrm_emb, id_density_emb | |
def forward(self, input_source, input_target, input_face, input_aug): | |
if input_target is not None: | |
h_source, feats = self.net_app(input_source) | |
h_target, _ = self.net_app(input_target) | |
h_face, _ = self.net_app(input_face) | |
h_aug, _ = self.net_app(input_aug) | |
h_source_id_emb, h_source_idrm_emb, h_source_id_density_emb = self.net_decouping(h_source) | |
h_target_id_emb, h_target_idrm_emb, h_target_id_density_emb = self.net_decouping(h_target) | |
h_face_id_emb, h_face_idrm_emb, h_face_id_density_emb = self.net_decouping(h_face) | |
h_aug_id_emb, h_aug_idrm_emb, h_aug_id_density_emb = self.net_decouping(h_aug) | |
h_target_motion_target = self.fc(h_target_idrm_emb) | |
h_another_face_target = self.fc(h_face_idrm_emb) | |
else: | |
h_source, feats = self.net_app(input_source) | |
return {'h_source':h_source, 'h_motion':h_target_motion_target, 'feats':feats, 'h_another_face_target':h_another_face_target, 'h_face':h_face, \ | |
'h_source_id_emb':h_source_id_emb, 'h_source_idrm_emb':h_source_idrm_emb, 'h_source_id_density_emb':h_source_id_density_emb, \ | |
'h_target_id_emb':h_target_id_emb, 'h_target_idrm_emb':h_target_idrm_emb, 'h_target_id_density_emb':h_target_id_density_emb, \ | |
'h_face_id_emb':h_face_id_emb, 'h_face_idrm_emb':h_face_idrm_emb, 'h_face_id_density_emb':h_face_id_density_emb, \ | |
'h_aug_id_emb':h_aug_id_emb, 'h_aug_idrm_emb':h_aug_idrm_emb ,'h_aug_id_density_emb':h_aug_id_density_emb, \ | |
} | |