import math import torch from torch import nn from torch.nn import functional as F def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5): return F.leaky_relu(input + bias, negative_slope) * scale class FusedLeakyReLU(nn.Module): def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5): super().__init__() self.bias = nn.Parameter(torch.zeros(1, channel, 1, 1)) self.negative_slope = negative_slope self.scale = scale def forward(self, input): out = fused_leaky_relu(input, self.bias, self.negative_slope, self.scale) return out def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1): _, minor, in_h, in_w = input.shape kernel_h, kernel_w = kernel.shape out = input.view(-1, minor, in_h, 1, in_w, 1) out = F.pad(out, [0, up_x - 1, 0, 0, 0, up_y - 1, 0, 0]) out = out.view(-1, minor, in_h * up_y, in_w * up_x) out = F.pad(out, [max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]) out = out[:, :, max(-pad_y0, 0): out.shape[2] - max(-pad_y1, 0), max(-pad_x0, 0): out.shape[3] - max(-pad_x1, 0), ] out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]) w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w) out = F.conv2d(out, w) out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1, in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1, ) return out[:, :, ::down_y, ::down_x] def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)): return upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1]) def make_kernel(k): k = torch.tensor(k, dtype=torch.float32) if k.ndim == 1: k = k[None, :] * k[:, None] k /= k.sum() return k class Blur(nn.Module): def __init__(self, kernel, pad, upsample_factor=1): super().__init__() kernel = make_kernel(kernel) if upsample_factor > 1: kernel = kernel * (upsample_factor ** 2) self.register_buffer('kernel', kernel) self.pad = pad def forward(self, input): return upfirdn2d(input, self.kernel, pad=self.pad) class ScaledLeakyReLU(nn.Module): def __init__(self, negative_slope=0.2): super().__init__() self.negative_slope = negative_slope def forward(self, input): return F.leaky_relu(input, negative_slope=self.negative_slope) class EqualConv2d(nn.Module): def __init__(self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True): super().__init__() self.weight = nn.Parameter(torch.randn(out_channel, in_channel, kernel_size, kernel_size)) self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2) self.stride = stride self.padding = padding if bias: self.bias = nn.Parameter(torch.zeros(out_channel)) else: self.bias = None def forward(self, input): return F.conv2d(input, self.weight * self.scale, bias=self.bias, stride=self.stride, padding=self.padding) def __repr__(self): return ( f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},' f' {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})' ) class EqualLinear(nn.Module): def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None): super().__init__() self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul)) if bias: self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init)) else: self.bias = None self.activation = activation self.scale = (1 / math.sqrt(in_dim)) * lr_mul self.lr_mul = lr_mul def forward(self, input): if self.activation: out = F.linear(input, self.weight * self.scale) out = fused_leaky_relu(out, self.bias * self.lr_mul) else: out = F.linear(input, self.weight * self.scale, bias=self.bias * self.lr_mul) return out def __repr__(self): return (f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})') class ConvLayer(nn.Sequential): def __init__( self, in_channel, out_channel, kernel_size, downsample=False, blur_kernel=[1, 3, 3, 1], bias=True, activate=True, ): layers = [] if downsample: factor = 2 p = (len(blur_kernel) - factor) + (kernel_size - 1) pad0 = (p + 1) // 2 pad1 = p // 2 layers.append(Blur(blur_kernel, pad=(pad0, pad1))) stride = 2 self.padding = 0 else: stride = 1 self.padding = kernel_size // 2 layers.append(EqualConv2d(in_channel, out_channel, kernel_size, padding=self.padding, stride=stride, bias=bias and not activate)) if activate: if bias: layers.append(FusedLeakyReLU(out_channel)) else: layers.append(ScaledLeakyReLU(0.2)) super().__init__(*layers) class ResBlock(nn.Module): def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1]): super().__init__() self.conv1 = ConvLayer(in_channel, in_channel, 3) self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=True) self.skip = ConvLayer(in_channel, out_channel, 1, downsample=True, activate=False, bias=False) def forward(self, input): out = self.conv1(input) out = self.conv2(out) skip = self.skip(input) out = (out + skip) / math.sqrt(2) return out class WeightedSumLayer(nn.Module): def __init__(self, num_tensors=8): super(WeightedSumLayer, self).__init__() self.weights = nn.Parameter(torch.randn(num_tensors)) def forward(self, tensor_list): weights = torch.softmax(self.weights, dim=0) weighted_sum = torch.zeros_like(tensor_list[0]) for tensor, weight in zip(tensor_list, weights): weighted_sum += tensor * weight return weighted_sum class EncoderApp(nn.Module): def __init__(self, size, w_dim=512, fusion_type=''): super(EncoderApp, self).__init__() channels = { 4: 512, 8: 512, 16: 512, 32: 512, 64: 256, 128: 128, 256: 64, 512: 32, 1024: 16 } self.w_dim = w_dim log_size = int(math.log(size, 2)) self.convs = nn.ModuleList() self.convs.append(ConvLayer(3, channels[size], 1)) in_channel = channels[size] for i in range(log_size, 2, -1): out_channel = channels[2 ** (i - 1)] self.convs.append(ResBlock(in_channel, out_channel)) in_channel = out_channel self.convs.append(EqualConv2d(in_channel, self.w_dim, 4, padding=0, bias=False)) self.fusion_type = fusion_type assert self.fusion_type == 'weighted_sum' if self.fusion_type == 'weighted_sum': print(f'HAL layer is enabled!') self.adaptive_pool = nn.AdaptiveAvgPool2d((1, 1)) self.fc1 = EqualLinear(64, 512) self.fc2 = EqualLinear(128, 512) self.fc3 = EqualLinear(256, 512) self.ws = WeightedSumLayer() def forward(self, x): res = [] h = x pooled_h_lists = [] for i, conv in enumerate(self.convs): h = conv(h) if self.fusion_type == 'weighted_sum': pooled_h = self.adaptive_pool(h).view(x.size(0), -1) if i == 0: pooled_h_lists.append(self.fc1(pooled_h)) elif i == 1: pooled_h_lists.append(self.fc2(pooled_h)) elif i == 2: pooled_h_lists.append(self.fc3(pooled_h)) else: pooled_h_lists.append(pooled_h) res.append(h) if self.fusion_type == 'weighted_sum': last_layer = self.ws(pooled_h_lists) else: last_layer = res[-1].squeeze(-1).squeeze(-1) layer_features = res[::-1][2:] return last_layer, layer_features class DecouplingModel(nn.Module): def __init__(self, input_dim, hidden_dim, output_dim): super(DecouplingModel, self).__init__() # identity_excluded_net is called identity encoder in the paper self.identity_net = nn.Sequential( nn.Linear(input_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, output_dim) ) self.identity_net_density = nn.Sequential( nn.Linear(input_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, output_dim) ) # identity_excluded_net is called motion encoder in the paper self.identity_excluded_net = nn.Sequential( nn.Linear(input_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, output_dim) ) def forward(self, x): id_, id_rm = self.identity_net(x), self.identity_excluded_net(x) id_density = self.identity_net_density(id_) return id_, id_rm, id_density class Encoder(nn.Module): def __init__(self, size, dim=512, dim_motion=20, weighted_sum=False): super(Encoder, self).__init__() # image encoder self.net_app = EncoderApp(size, dim, weighted_sum) # decouping network self.net_decouping = DecouplingModel(dim, dim, dim) # part of the motion encoder fc = [EqualLinear(dim, dim)] for i in range(3): fc.append(EqualLinear(dim, dim)) fc.append(EqualLinear(dim, dim_motion)) self.fc = nn.Sequential(*fc) def enc_app(self, x): h_source = self.net_app(x) return h_source def enc_motion(self, x): h, _ = self.net_app(x) h_motion = self.fc(h) return h_motion def encode_image_obj(self, image_obj): feat, _ = self.net_app(image_obj) id_emb, idrm_emb, id_density_emb = self.net_decouping(feat) return id_emb, idrm_emb, id_density_emb def forward(self, input_source, input_target, input_face, input_aug): if input_target is not None: h_source, feats = self.net_app(input_source) h_target, _ = self.net_app(input_target) h_face, _ = self.net_app(input_face) h_aug, _ = self.net_app(input_aug) h_source_id_emb, h_source_idrm_emb, h_source_id_density_emb = self.net_decouping(h_source) h_target_id_emb, h_target_idrm_emb, h_target_id_density_emb = self.net_decouping(h_target) h_face_id_emb, h_face_idrm_emb, h_face_id_density_emb = self.net_decouping(h_face) h_aug_id_emb, h_aug_idrm_emb, h_aug_id_density_emb = self.net_decouping(h_aug) h_target_motion_target = self.fc(h_target_idrm_emb) h_another_face_target = self.fc(h_face_idrm_emb) else: h_source, feats = self.net_app(input_source) return {'h_source':h_source, 'h_motion':h_target_motion_target, 'feats':feats, 'h_another_face_target':h_another_face_target, 'h_face':h_face, \ 'h_source_id_emb':h_source_id_emb, 'h_source_idrm_emb':h_source_idrm_emb, 'h_source_id_density_emb':h_source_id_density_emb, \ 'h_target_id_emb':h_target_id_emb, 'h_target_idrm_emb':h_target_idrm_emb, 'h_target_id_density_emb':h_target_id_density_emb, \ 'h_face_id_emb':h_face_id_emb, 'h_face_idrm_emb':h_face_idrm_emb, 'h_face_id_density_emb':h_face_id_density_emb, \ 'h_aug_id_emb':h_aug_id_emb, 'h_aug_idrm_emb':h_aug_idrm_emb ,'h_aug_id_density_emb':h_aug_id_density_emb, \ }