nikravan commited on
Commit
6423ce9
·
1 Parent(s): 464caa9

test initial

Browse files
Files changed (1) hide show
  1. app.py +68 -68
app.py CHANGED
@@ -1,86 +1,86 @@
1
- import gradio as gr
2
- import requests
3
- import os
4
 
5
- ##Bloom
6
- API_URL = "https://api-inference.huggingface.co/models/bigscience/bloom"
7
 
8
- HF_TOKEN = "Bloom_Token"
9
- headers = {"Authorization": f"Bearer {HF_TOKEN}"}
10
 
11
 
12
- def sql_generate(prompt, input_prompt_sql ):
13
 
14
- print(f"*****Inside SQL_generate - Prompt is :{prompt}")
15
- print(f"length of input_prompt_sql is {len(input_prompt_sql)}")
16
- print(f"length of prompt is {len(prompt)}")
17
- if len(prompt) == 0:
18
- prompt = input_prompt_sql
19
 
20
- json_ = {"inputs": prompt,
21
- "parameters":
22
- {
23
- "top_p": 0.9,
24
- "temperature": 1.1,
25
- "max_new_tokens": 64,
26
- "return_full_text": False,
27
- },
28
- "options":
29
- {"use_cache": True,
30
- "wait_for_model": True,
31
- },}
32
- response = requests.post(API_URL, headers=headers, json=json_)
33
- print(f"Response is : {response}")
34
- output = response.json()
35
- print(f"output is : {output}")
36
- output_tmp = output[0]['generated_text']
37
- print(f"output_tmp is: {output_tmp}")
38
- solution = output_tmp.split("\nQ:")[0]
39
- print(f"Final response after splits is: {solution}")
40
- if '\nOutput:' in solution:
41
- final_solution = solution.split("\nOutput:")[0]
42
- print(f"Response after removing output is: {final_solution}")
43
- elif '\n\n' in solution:
44
- final_solution = solution.split("\n\n")[0]
45
- print(f"Response after removing new line entries is: {final_solution}")
46
- else:
47
- final_solution = solution
48
- return final_solution
49
 
50
 
51
- demo = gr.Blocks()
52
 
53
- with demo:
54
- gr.Markdown("<h1><center>Zero Shot SQL by Bloom</center></h1>")
55
- gr.Markdown(
56
- """[BigScienceW Bloom](https://twitter.com/BigscienceW) \n\n Large language models have demonstrated a capability of Zero-Shot SQL generation. Some might say — You can get good results out of LLMs if you know how to speak to them. This space is an attempt at inspecting this behavior/capability in the new HuggingFace BigScienceW [Bloom](https://huggingface.co/bigscience/bloom) model.\n\nThe Prompt length is limited at the API end right now, thus there is a certain limitation in testing Bloom's capability thoroughly.This Space might sometime fail due to inference queue being full and logs would end up showing error as *'queue full, try again later'*, in such cases please try again after few minutes. Please note that, longer prompts might not work as well and the Space could error out with Response code [500] or *'A very long prompt, temporarily not accepting these'* message in the logs. Still iterating over the app, might be able to improve it further soon.. \n\nThis Space is created by [Yuvraj Sharma](https://twitter.com/yvrjsharma) for Gradio EuroPython 2022 Demo."""
57
- )
58
- with gr.Row():
59
 
60
- example_prompt = gr.Radio( [
61
- "Instruction: Given an input question, respond with syntactically correct PostgreSQL\nInput: How many users signed up in the past month?\nPostgreSQL query: ",
62
- "Instruction: Given an input question, respond with syntactically correct PostgreSQL\nInput: Create a query that displays empfname, emplname, deptid, deptname, location from employee table. Results should be in the ascending order based on the empfname and location.\nPostgreSQL query: ",
63
- "Instruction: Given an input question, respond with syntactically correct PostgreSQL. Only use table called 'employees'.\nInput: What is the total salary paid to all the employees?\nPostgreSQL query: ",
64
- "Instruction: Given an input question, respond with syntactically correct PostgreSQL. Only use table called 'employees'.\nInput: List names of all the employees whose name end with 'r'.\nPostgreSQL query: ",
65
- "Instruction: Given an input question, respond with syntactically correct PostgreSQL. Only use table called 'employees'.\nInput: What are the number of employees in each department?\nPostgreSQL query: ",
66
- "Instruction: Given an input question, respond with syntactically correct PostgreSQL. Only use table called 'employees'.\nInput: Select names of all theemployees who have third character in their name as 't'.\nPostgreSQL query: ",
67
- "Instruction: Given an input question, respond with syntactically correct PostgreSQL. Only use table called 'employees'.\nInput: Select names of all the employees who are working under 'Peter'.\nPostgreSQL query: ", ], label= "Choose a sample Prompt")
68
 
69
- #with gr.Column:
70
- input_prompt_sql = gr.Textbox(label="Or Write text following the example pattern given below, to get SQL commands...", value="Instruction: Given an input question, respond with syntactically correct PostgreSQL. Use table called 'department'.\nInput: Select names of all the departments in their descending alphabetical order.\nPostgreSQL query: ", lines=6)
71
 
72
- with gr.Row():
73
- generated_txt = gr.Textbox(lines=3)
74
 
75
- b1 = gr.Button("Generate SQL")
76
- b1.click(sql_generate,inputs=[example_prompt, input_prompt_sql], outputs=generated_txt)
77
 
78
- with gr.Row():
79
- gr.Markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=europython2022_zero-shot-sql-by-bloom)")
80
 
81
- demo.launch(enable_queue=True, debug=True)
82
 
83
 
84
- #import gradio as gr
85
 
86
- #gr.Interface.load("models/bigscience/bloom").launch()
 
1
+ # import gradio as gr
2
+ # import requests
3
+ # import os
4
 
5
+ # ##Bloom
6
+ # API_URL = "https://api-inference.huggingface.co/models/bigscience/bloom"
7
 
8
+ # HF_TOKEN = "Bloom_Token"
9
+ # headers = {"Authorization": f"Bearer {HF_TOKEN}"}
10
 
11
 
12
+ # def sql_generate(prompt, input_prompt_sql ):
13
 
14
+ # print(f"*****Inside SQL_generate - Prompt is :{prompt}")
15
+ # print(f"length of input_prompt_sql is {len(input_prompt_sql)}")
16
+ # print(f"length of prompt is {len(prompt)}")
17
+ # if len(prompt) == 0:
18
+ # prompt = input_prompt_sql
19
 
20
+ # json_ = {"inputs": prompt,
21
+ # "parameters":
22
+ # {
23
+ # "top_p": 0.9,
24
+ # "temperature": 1.1,
25
+ # "max_new_tokens": 64,
26
+ # "return_full_text": False,
27
+ # },
28
+ # "options":
29
+ # {"use_cache": True,
30
+ # "wait_for_model": True,
31
+ # },}
32
+ # response = requests.post(API_URL, headers=headers, json=json_)
33
+ # print(f"Response is : {response}")
34
+ # output = response.json()
35
+ # print(f"output is : {output}")
36
+ # output_tmp = output[0]['generated_text']
37
+ # print(f"output_tmp is: {output_tmp}")
38
+ # solution = output_tmp.split("\nQ:")[0]
39
+ # print(f"Final response after splits is: {solution}")
40
+ # if '\nOutput:' in solution:
41
+ # final_solution = solution.split("\nOutput:")[0]
42
+ # print(f"Response after removing output is: {final_solution}")
43
+ # elif '\n\n' in solution:
44
+ # final_solution = solution.split("\n\n")[0]
45
+ # print(f"Response after removing new line entries is: {final_solution}")
46
+ # else:
47
+ # final_solution = solution
48
+ # return final_solution
49
 
50
 
51
+ # demo = gr.Blocks()
52
 
53
+ # with demo:
54
+ # gr.Markdown("<h1><center>Zero Shot SQL by Bloom</center></h1>")
55
+ # gr.Markdown(
56
+ # """[BigScienceW Bloom](https://twitter.com/BigscienceW) \n\n Large language models have demonstrated a capability of Zero-Shot SQL generation. Some might say — You can get good results out of LLMs if you know how to speak to them. This space is an attempt at inspecting this behavior/capability in the new HuggingFace BigScienceW [Bloom](https://huggingface.co/bigscience/bloom) model.\n\nThe Prompt length is limited at the API end right now, thus there is a certain limitation in testing Bloom's capability thoroughly.This Space might sometime fail due to inference queue being full and logs would end up showing error as *'queue full, try again later'*, in such cases please try again after few minutes. Please note that, longer prompts might not work as well and the Space could error out with Response code [500] or *'A very long prompt, temporarily not accepting these'* message in the logs. Still iterating over the app, might be able to improve it further soon.. \n\nThis Space is created by [Yuvraj Sharma](https://twitter.com/yvrjsharma) for Gradio EuroPython 2022 Demo."""
57
+ # )
58
+ # with gr.Row():
59
 
60
+ # example_prompt = gr.Radio( [
61
+ # "Instruction: Given an input question, respond with syntactically correct PostgreSQL\nInput: How many users signed up in the past month?\nPostgreSQL query: ",
62
+ # "Instruction: Given an input question, respond with syntactically correct PostgreSQL\nInput: Create a query that displays empfname, emplname, deptid, deptname, location from employee table. Results should be in the ascending order based on the empfname and location.\nPostgreSQL query: ",
63
+ # "Instruction: Given an input question, respond with syntactically correct PostgreSQL. Only use table called 'employees'.\nInput: What is the total salary paid to all the employees?\nPostgreSQL query: ",
64
+ # "Instruction: Given an input question, respond with syntactically correct PostgreSQL. Only use table called 'employees'.\nInput: List names of all the employees whose name end with 'r'.\nPostgreSQL query: ",
65
+ # "Instruction: Given an input question, respond with syntactically correct PostgreSQL. Only use table called 'employees'.\nInput: What are the number of employees in each department?\nPostgreSQL query: ",
66
+ # "Instruction: Given an input question, respond with syntactically correct PostgreSQL. Only use table called 'employees'.\nInput: Select names of all theemployees who have third character in their name as 't'.\nPostgreSQL query: ",
67
+ # "Instruction: Given an input question, respond with syntactically correct PostgreSQL. Only use table called 'employees'.\nInput: Select names of all the employees who are working under 'Peter'.\nPostgreSQL query: ", ], label= "Choose a sample Prompt")
68
 
69
+ # #with gr.Column:
70
+ # input_prompt_sql = gr.Textbox(label="Or Write text following the example pattern given below, to get SQL commands...", value="Instruction: Given an input question, respond with syntactically correct PostgreSQL. Use table called 'department'.\nInput: Select names of all the departments in their descending alphabetical order.\nPostgreSQL query: ", lines=6)
71
 
72
+ # with gr.Row():
73
+ # generated_txt = gr.Textbox(lines=3)
74
 
75
+ # b1 = gr.Button("Generate SQL")
76
+ # b1.click(sql_generate,inputs=[example_prompt, input_prompt_sql], outputs=generated_txt)
77
 
78
+ # with gr.Row():
79
+ # gr.Markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=europython2022_zero-shot-sql-by-bloom)")
80
 
81
+ # demo.launch(enable_queue=True, debug=True)
82
 
83
 
84
+ import gradio as gr
85
 
86
+ gr.Interface.load("models/bigscience/bloom").launch()