File size: 2,728 Bytes
7faf1c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import os
import streamlit as st
from PIL import Image

from inference import get_predictions


st.title('Person characteristic prediction Demo')

sample_files = os.listdir('./data/sample_images')
tot_index = len(sample_files)
sample_path = './data/sample_images'

if 'image_index' not in st.session_state:
    st.session_state['image_index'] = 4

if 'which_button' not in st.session_state:
    st.session_state['which_button'] = 'sample_button'

stream_col, upload_col, sample_col = st.tabs(['Take picture', 'Upload file', 'Select from sample images'])
with stream_col:
    picture = st.camera_input("Take a picture")
    if picture is not None:
        captured_img = Image.open(picture)
        st.image(captured_img, caption='Captured Image')
        use_captured_image = st.button('Use this captured image')
        if use_captured_image is True:
            st.session_state['which_button'] = 'captured_button'
with upload_col:
    uploaded_file = st.file_uploader("Select a picture from your computer(png/jpg) :", type=['png', 'jpg', 'jpeg'])
    if uploaded_file is not None:
        img = Image.open(uploaded_file)
        st.image(img, caption='Uploaded Image')
        use_uploaded_image = st.button("Use uploaded image")
        if use_uploaded_image is True:
            st.session_state['which_button'] = 'upload_button'

with sample_col:
    st.write("Select one from these available samples: ")
    current_index = st.session_state['image_index']
    current_image = Image.open(os.path.join(sample_path, sample_files[current_index]))

    # next = st.button('next_image')
    prev_button, next_button = st.columns(2)
    with prev_button:
        prev = st.button('prev_image')
    with next_button:
        next = st.button('next_image')
    if prev:
        current_index = (current_index - 1) % tot_index
    if next:
        current_index = (current_index + 1) % tot_index
    st.session_state['image_index'] = current_index
    sample_image = Image.open(os.path.join(sample_path, sample_files[current_index]))
    st.image(sample_image, caption='Chosen image')

    use_sample_image = st.button("Use this Sample")
    if use_sample_image is True:
        st.session_state['which_button'] = 'sample_button'

predict_clicked = st.button("Get prediction")
if predict_clicked:
    which_button = st.session_state['which_button']
    if which_button == 'sample_button':
        predictions = get_predictions(sample_image)
    elif which_button == 'upload_button':
        predictions = get_predictions(img)
    elif which_button  == 'captured_button':
        predictions = get_predictions(captured_img)
    st.markdown('**The model predictions along with their probabilities are :**')
    st.table(predictions)