Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,28 +1,55 @@
|
|
|
|
|
|
|
|
1 |
from transformers import MarianMTModel, MarianTokenizer
|
2 |
-
from flask import Flask, request, jsonify
|
3 |
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
model = MarianMTModel.from_pretrained(model_name)
|
9 |
-
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
|
|
|
24 |
|
25 |
-
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torch.utils.data import DataLoader, Dataset
|
4 |
from transformers import MarianMTModel, MarianTokenizer
|
|
|
5 |
|
6 |
+
# Define dataset class
|
7 |
+
class TranslationDataset(Dataset):
|
8 |
+
def __init__(self, source_sentences, target_sentences, tokenizer):
|
9 |
+
self.source_sentences = source_sentences
|
10 |
+
self.target_sentences = target_sentences
|
11 |
+
self.tokenizer = tokenizer
|
12 |
|
13 |
+
def __len__(self):
|
14 |
+
return len(self.source_sentences)
|
|
|
|
|
15 |
|
16 |
+
def __getitem__(self, idx):
|
17 |
+
source_text = self.source_sentences[idx]
|
18 |
+
target_text = self.target_sentences[idx]
|
19 |
+
source_tokens = self.tokenizer(source_text, return_tensors='pt', padding=True, truncation=True)
|
20 |
+
target_tokens = self.tokenizer(target_text, return_tensors='pt', padding=True, truncation=True)
|
21 |
+
return {'input_ids': source_tokens['input_ids'], 'labels': target_tokens['input_ids']}
|
22 |
|
23 |
+
# Define training function
|
24 |
+
def train(model, dataloader, optimizer, criterion, num_epochs):
|
25 |
+
model.train()
|
26 |
+
for epoch in range(num_epochs):
|
27 |
+
total_loss = 0.0
|
28 |
+
for batch in dataloader:
|
29 |
+
input_ids = batch['input_ids'].to(device)
|
30 |
+
labels = batch['labels'].to(device)
|
31 |
+
optimizer.zero_grad()
|
32 |
+
outputs = model(input_ids=input_ids, labels=labels)
|
33 |
+
loss = outputs.loss
|
34 |
+
loss.backward()
|
35 |
+
optimizer.step()
|
36 |
+
total_loss += loss.item()
|
37 |
+
print(f'Epoch {epoch + 1}, Loss: {total_loss / len(dataloader)}')
|
38 |
|
39 |
+
# Load tokenizer and model
|
40 |
+
tokenizer = MarianTokenizer.from_pretrained('Helsinki-NLP/opus-mt-en-fr')
|
41 |
+
model = MarianMTModel.from_pretrained('Helsinki-NLP/opus-mt-en-fr').to(device)
|
42 |
|
43 |
+
# Prepare dataset and dataloader
|
44 |
+
dataset = TranslationDataset(source_sentences, target_sentences, tokenizer)
|
45 |
+
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)
|
46 |
|
47 |
+
# Define optimizer and criterion
|
48 |
+
optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5)
|
49 |
+
criterion = nn.CrossEntropyLoss()
|
50 |
+
|
51 |
+
# Train the model
|
52 |
+
train(model, dataloader, optimizer, criterion, num_epochs=10)
|
53 |
+
|
54 |
+
# Save the trained model
|
55 |
+
torch.save(model.state_dict(), 'translation_model.pth')
|