Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
from torchvision import transforms
|
5 |
+
from transformers import pipeline
|
6 |
+
|
7 |
+
# Load the face detection model
|
8 |
+
face_detector = pipeline('face-detection', model='facebook/facemask-plugin-fasterrcnn')
|
9 |
+
|
10 |
+
# Function to detect faces in an image
|
11 |
+
def detect_faces(image):
|
12 |
+
# Convert image to PyTorch tensor
|
13 |
+
image_tensor = transforms.ToTensor()(image).unsqueeze(0)
|
14 |
+
|
15 |
+
# Detect faces
|
16 |
+
faces = face_detector(image_tensor)
|
17 |
+
|
18 |
+
return faces
|
19 |
+
|
20 |
+
# Streamlit app
|
21 |
+
def main():
|
22 |
+
st.title("Multiple Face Detection using Hugging Face")
|
23 |
+
|
24 |
+
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
|
25 |
+
|
26 |
+
if uploaded_file is not None:
|
27 |
+
# Read the image
|
28 |
+
image = Image.open(uploaded_file)
|
29 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
30 |
+
|
31 |
+
# Detect faces
|
32 |
+
faces = detect_faces(image)
|
33 |
+
|
34 |
+
# Display the number of faces detected
|
35 |
+
num_faces = len(faces)
|
36 |
+
st.write(f"Number of faces detected: {num_faces}")
|
37 |
+
|
38 |
+
# Display bounding boxes around detected faces
|
39 |
+
for face in faces:
|
40 |
+
xmin, ymin, xmax, ymax = face['box']
|
41 |
+
image_with_box = image.copy()
|
42 |
+
draw = ImageDraw.Draw(image_with_box)
|
43 |
+
draw.rectangle([xmin, ymin, xmax, ymax], outline="red", width=3)
|
44 |
+
st.image(image_with_box, caption="Face Detection", use_column_width=True)
|
45 |
+
|
46 |
+
if __name__ == "__main__":
|
47 |
+
main()
|