nikshep01 commited on
Commit
6c5f0dc
·
verified ·
1 Parent(s): ec6bcca

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +47 -0
app.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from PIL import Image
3
+ import torch
4
+ from torchvision import transforms
5
+ from transformers import pipeline
6
+
7
+ # Load the face detection model
8
+ face_detector = pipeline('face-detection', model='facebook/facemask-plugin-fasterrcnn')
9
+
10
+ # Function to detect faces in an image
11
+ def detect_faces(image):
12
+ # Convert image to PyTorch tensor
13
+ image_tensor = transforms.ToTensor()(image).unsqueeze(0)
14
+
15
+ # Detect faces
16
+ faces = face_detector(image_tensor)
17
+
18
+ return faces
19
+
20
+ # Streamlit app
21
+ def main():
22
+ st.title("Multiple Face Detection using Hugging Face")
23
+
24
+ uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
25
+
26
+ if uploaded_file is not None:
27
+ # Read the image
28
+ image = Image.open(uploaded_file)
29
+ st.image(image, caption="Uploaded Image", use_column_width=True)
30
+
31
+ # Detect faces
32
+ faces = detect_faces(image)
33
+
34
+ # Display the number of faces detected
35
+ num_faces = len(faces)
36
+ st.write(f"Number of faces detected: {num_faces}")
37
+
38
+ # Display bounding boxes around detected faces
39
+ for face in faces:
40
+ xmin, ymin, xmax, ymax = face['box']
41
+ image_with_box = image.copy()
42
+ draw = ImageDraw.Draw(image_with_box)
43
+ draw.rectangle([xmin, ymin, xmax, ymax], outline="red", width=3)
44
+ st.image(image_with_box, caption="Face Detection", use_column_width=True)
45
+
46
+ if __name__ == "__main__":
47
+ main()