import gradio as gr import cv2 import mediapipe as mp import numpy as np from PIL import Image # Initialize mediapipe pose class mp_pose = mp.solutions.pose pose = mp_pose.Pose(static_image_mode=False, min_detection_confidence=0.5, model_complexity=1) mp_drawing = mp.solutions.drawing_utils # Function to calculate the angle between three points def calculate_angle(a, b, c): a = np.array([a.x, a.y]) # First point b = np.array([b.x, b.y]) # Mid point c = np.array([c.x, c.y]) # End point radians = np.arctan2(c[1] - b[1], c[0] - b[0]) - np.arctan2(a[1] - b[1], a[0] - b[0]) angle = np.abs(radians * 180.0 / np.pi) if angle > 180.0: angle = 360 - angle return angle # Define a function to classify yoga poses def classify_pose(landmarks, output_image, display=False): label = 'Unknown Pose' color = (0, 0, 255) # Calculate the required angles left_elbow_angle = calculate_angle( landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value], landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value], landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value]) right_elbow_angle = calculate_angle( landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value], landmarks[mp_pose.PoseLandmark.RIGHT_ELBOW.value], landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value]) left_shoulder_angle = calculate_angle( landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value], landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value], landmarks[mp_pose.PoseLandmark.LEFT_HIP.value]) right_shoulder_angle = calculate_angle( landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value], landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value], landmarks[mp_pose.PoseLandmark.RIGHT_ELBOW.value]) left_knee_angle = calculate_angle( landmarks[mp_pose.PoseLandmark.LEFT_HIP.value], landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value], landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value]) right_knee_angle = calculate_angle( landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value], landmarks[mp_pose.PoseLandmark.RIGHT_KNEE.value], landmarks[mp_pose.PoseLandmark.RIGHT_ANKLE.value]) # Check for Five-Pointed Star Pose if abs(landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].y - landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].y) < 0.1 and \ abs(landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].y - landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value].y) < 0.1 and \ abs(landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value].x - landmarks[mp_pose.PoseLandmark.RIGHT_ANKLE.value].x) > 0.2 and \ abs(landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].x - landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].x) > 0.2: label = "Five-Pointed Star Pose" # Check for Warrior II pose if 165 < left_elbow_angle < 195 and 165 < right_elbow_angle < 195 and \ 80 < left_shoulder_angle < 110 and 80 < right_shoulder_angle < 110: if (165 < left_knee_angle < 195 or 165 < right_knee_angle < 195) and \ (90 < left_knee_angle < 120 or 90 < right_knee_angle < 120): label = 'Warrior II Pose' # Check for T pose if 165 < left_elbow_angle < 195 and 165 < right_elbow_angle < 195 and \ 80 < left_shoulder_angle < 110 and 80 < right_shoulder_angle < 110 and \ 160 < left_knee_angle < 195 and 160 < right_knee_angle < 195: label = 'T Pose' # Check for Tree Pose if (165 < left_knee_angle < 195 or 165 < right_knee_angle < 195) and \ (315 < left_knee_angle < 335 or 25 < right_knee_angle < 45): label = 'Tree Pose' # Check for Upward Salute Pose if abs(landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].x - landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].x) < 0.1 and \ abs(landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].x - landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value].x) < 0.1 and \ landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].y < landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y and \ landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].y < landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value].y and \ abs(landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y - landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value].y) < 0.05: label = "Upward Salute Pose" # Check for Hands Under Feet Pose if landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].y > landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value].y and \ landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].y > landmarks[mp_pose.PoseLandmark.RIGHT_KNEE.value].y and \ abs(landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].x - landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value].x) < 0.05 and \ abs(landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].x - landmarks[mp_pose.PoseLandmark.RIGHT_ANKLE.value].x) < 0.05: label = "Hands Under Feet Pose" # Check for Plank Pose # The body should be in a straight line from head to heels, # so the shoulder and hip angles should be close to 180 degrees if left_shoulder_angle > 160 and left_shoulder_angle < 200 and \ right_shoulder_angle > 160 and right_shoulder_angle < 200 and \ left_knee_angle > 160 and left_knee_angle < 200 and \ right_knee_angle > 160 and right_knee_angle < 200: label = "Plank Pose" # Update the color to green if pose is classified if label != 'Unknown Pose': color = (0, 255, 0) # Write the label on the output image cv2.putText(output_image, label, (10, 30), cv2.FONT_HERSHEY_PLAIN, 2, color, 2) return output_image, label def detect_and_classify_pose(input_image): # Convert input to numpy array if it's not if isinstance(input_image, Image.Image): input_image = np.array(input_image) # Convert the image from RGB to BGR (OpenCV format) input_image = cv2.cvtColor(input_image, cv2.COLOR_RGB2BGR) results = pose.process(input_image) pose_classification = "No pose detected" if results.pose_landmarks: mp_drawing.draw_landmarks(input_image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS) input_image, pose_classification = classify_pose(results.pose_landmarks.landmark, input_image) return cv2.cvtColor(input_image, cv2.COLOR_BGR2RGB), pose_classification iface = gr.Interface( fn=detect_and_classify_pose, inputs=gr.Video(streaming=True), outputs=["image", "text"], title="Live Yoga Pose Detection and Classification", description="This app detects and classifies yoga poses from the live camera feed using MediaPipe.", ) iface.launch(share=True)