File size: 3,074 Bytes
66ff3e9
 
8658e51
b944409
 
991d86a
2a864c8
66ff3e9
991d86a
 
 
2a23908
 
 
 
 
c1a4bd7
 
 
 
 
991d86a
 
33d5d58
305a1a4
 
 
4cb67db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4394f5b
4cb67db
 
33d5d58
4cb67db
 
 
 
33d5d58
4cb67db
33d5d58
 
 
 
 
 
b3c9596
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7f2c99
b3c9596
 
e731b38
b3c9596
 
33d5d58
ec9dfba
b3c9596
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import gradio as gr
import requests
import json
import os

# Retrieve the OpenRouter API Key from the Space secrets
API_KEY = os.getenv("OpenRouter_API_KEY")

# Define available models for selection
MODEL_OPTIONS = [
    "openai/gpt-4o-mini-2024-07-18",
    "meta-llama/llama-3.1-405b-instruct",
    "nvidia/llama-3.1-nemotron-70b-instruct",
    "qwen/qwen-2.5-7b-instruct",
    "mistralai/mistral-large-2411",
    "microsoft/phi-3-medium-128k-instruct",
    "meta-llama/llama-3.1-405b-instruct:free",
    "nousresearch/hermes-3-llama-3.1-405b:free",
    "mistralai/mistral-7b-instruct:free",
    "microsoft/phi-3-medium-128k-instruct:free",
    "liquid/lfm-40b:free"
]

def generate_text(input_text, selected_model, history):
    if history is None:
        history = ""  # Initialize history if it's None
    
    response = requests.post(
        url="https://openrouter.ai/api/v1/chat/completions",
        headers={
            "Authorization": f"Bearer {API_KEY}",
            "Content-Type": "application/json"
        },
        data=json.dumps({
            "model": selected_model,  # Use selected model
            "messages": [{"role": "user", "content": input_text}],
            "top_p": 1,
            "temperature": 1,
            "frequency_penalty": 0,
            "presence_penalty": 0,
            "repetition_penalty": 1,
            "top_k": 0,
        })
    )
    
    # Handle errors
    if response.status_code != 200:
        return f"Error: {response.status_code}, {response.text}", history
    
    # Parse and return the content of the response
    try:
        response_json = response.json()
        generated_response = response_json.get("choices", [{}])[0].get("message", {}).get("content", "No content returned.")
    except json.JSONDecodeError:
        generated_response = "Error: Unable to parse response."

    # Append the new interaction to the history
    history += f"User: {input_text}\nResponse: {generated_response}\n"
    
    return generated_response, history

# Define the Gradio layout using Blocks
with gr.Blocks() as iface:
    # Inject custom CSS using gr.HTML()
    gr.HTML("""
        <style>
            #output-response, #output-history {
                height: 300px;
                overflow: auto;
                border: 1px solid #ddd;
                padding: 10px;
            }
        </style>
    """)

    input_text = gr.Textbox(lines=2, label="Input Text", placeholder="Enter your query here")
    selected_model = gr.Dropdown(choices=MODEL_OPTIONS, label="Select Model", value=MODEL_OPTIONS[0])
    
    output_response = gr.Textbox(label="Response", placeholder="Response will be shown here")
    output_history = gr.Textbox(label="History", placeholder="Interaction history will be shown here", lines=10, interactive=False)
    
    # Trigger the function when the user inputs text
    generate_button = gr.Button("Generate")
    generate_button.click(generate_text, inputs=[input_text, selected_model, gr.State()], outputs=[output_response, output_history])

# Launch the interface
iface.launch()