import gradio as gr import requests import json import os # Retrieve the OpenRouter API Key from the Space secrets API_KEY = os.getenv("OpenRouter_API_KEY") # Define available models for selection MODEL_OPTIONS = [ "openai/gpt-4o-mini-2024-07-18", "meta-llama/llama-3.1-405b-instruct", "nvidia/llama-3.1-nemotron-70b-instruct", "qwen/qwen-2.5-7b-instruct", "mistralai/mistral-large-2411", "microsoft/phi-3-medium-128k-instruct", "meta-llama/llama-3.1-405b-instruct:free", "nousresearch/hermes-3-llama-3.1-405b:free", "mistralai/mistral-7b-instruct:free", "microsoft/phi-3-medium-128k-instruct:free", "liquid/lfm-40b:free" ] def generate_text(input_text, selected_model, history): if history is None: history = "" # Initialize history if it's None response = requests.post( url="https://openrouter.ai/api/v1/chat/completions", headers={ "Authorization": f"Bearer {API_KEY}", "Content-Type": "application/json" }, data=json.dumps({ "model": selected_model, # Use selected model "messages": [{"role": "user", "content": input_text}], "top_p": 1, "temperature": 1, "frequency_penalty": 0, "presence_penalty": 0, "repetition_penalty": 1, "top_k": 0, }) ) # Handle errors if response.status_code != 200: return f"Error: {response.status_code}, {response.text}", history # Parse and return the content of the response try: response_json = response.json() generated_response = response_json.get("choices", [{}])[0].get("message", {}).get("content", "No content returned.") except json.JSONDecodeError: generated_response = "Error: Unable to parse response." # Append the new interaction to the history history += f"User: {input_text}\nResponse: {generated_response}\n" return generated_response, history # Define the Gradio layout using Blocks with gr.Blocks() as iface: # Inject custom CSS using gr.HTML() gr.HTML(""" """) input_text = gr.Textbox(lines=2, label="Input Text", placeholder="Enter your query here") selected_model = gr.Dropdown(choices=MODEL_OPTIONS, label="Select Model", value=MODEL_OPTIONS[0]) # Generate button positioned below the dropdown generate_button = gr.Button("Generate") output_response = gr.Textbox(label="Response", placeholder="Response will be shown here") output_history = gr.Textbox(label="History", placeholder="Interaction history will be shown here", lines=10, interactive=False) # Trigger the function when the user clicks the "Generate" button generate_button.click(generate_text, inputs=[input_text, selected_model, gr.State()], outputs=[output_response, output_history]) # Launch the interface iface.launch()