File size: 7,118 Bytes
5e16d9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import sqlite3
import logging
import requests
from typing import Dict, Any, List, Optional
from dataclasses import dataclass

@dataclass
class TableInfo:
    """Store table information including schema and relationships"""
    name: str
    columns: List[Dict[str, Any]]
    relationships: List[Dict[str, str]]

class LLMService:
    def __init__(self, api_key: str, db_path: str):
        self.api_key = api_key
        self.db_path = db_path
        self.api_url = "https://api.groq.com/openai/v1/chat/completions"
        self.headers = {
            "Authorization": f"Bearer {api_key}",
            "Content-Type": "application/json"
        }
        logging.basicConfig(level=logging.INFO)
        self.logger = logging.getLogger(__name__)
        self.table_info = self._load_database_schema()

    def _load_database_schema(self) -> Dict[str, TableInfo]:
        """Load complete database schema with relationships"""
        schema_info = {}
        try:
            with sqlite3.connect(self.db_path) as conn:
                cursor = conn.cursor()
                
                # Get all tables
                cursor.execute("SELECT name FROM sqlite_master WHERE type='table';")
                tables = cursor.fetchall()
                
                for table in tables:
                    table_name = table[0]
                    # Get columns
                    cursor.execute(f"PRAGMA table_info({table_name});")
                    columns = [{
                        'name': col[1],
                        'type': col[2],
                        'nullable': not col[3],
                        'primary_key': bool(col[5])
                    } for col in cursor.fetchall()]
                    
                    # Get foreign keys
                    cursor.execute(f"PRAGMA foreign_key_list({table_name});")
                    relationships = [{
                        'from_table': table_name,
                        'to_table': fk[2],
                        'from_column': fk[3],
                        'to_column': fk[4]
                    } for fk in cursor.fetchall()]
                    
                    schema_info[table_name] = TableInfo(
                        name=table_name,
                        columns=columns,
                        relationships=relationships
                    )
                    
            return schema_info
            
        except sqlite3.Error as e:
            self.logger.error(f"Database error while loading schema: {e}")
            return {}

    def _prepare_schema_prompt(self) -> str:
        """Prepare a comprehensive schema description for the LLM"""
        prompt = "Database Schema:\n\n"
        
        # Add table schemas
        for table_name, info in self.table_info.items():
            prompt += f"Table: {table_name}\n"
            prompt += "Columns:\n"
            for col in info.columns:
                prompt += f"- {col['name']} ({col['type']})"
                if col['primary_key']:
                    prompt += " PRIMARY KEY"
                if not col['nullable']:
                    prompt += " NOT NULL"
                prompt += "\n"
            
            # Add relationships
            if info.relationships:
                prompt += "Relationships:\n"
                for rel in info.relationships:
                    prompt += f"- {rel['from_table']}.{rel['from_column']} -> {rel['to_table']}.{rel['to_column']}\n"
            prompt += "\n"
            
        return prompt

    def convert_to_sql_query(self, natural_query: str) -> Dict[str, Any]:
        """Convert natural language to SQL query using Groq API"""
        schema_prompt = self._prepare_schema_prompt()
        
        system_prompt = f"""
        You are an expert SQL query generator. Your task is to convert natural language queries into valid SQL queries based on the provided database schema.
        
        {schema_prompt}
        
        Rules for generating SQL queries:
        1. Use proper JOIN syntax when relating multiple tables
        2. Consider table relationships and use appropriate JOIN conditions
        3. Handle NULL values appropriately
        4. Use table aliases when necessary for clarity
        5. Return only the requested columns, use * only when specifically asked
        6. Include WHERE clauses based on the natural language conditions
        7. Use appropriate aggregation functions when needed (COUNT, SUM, AVG, etc.)
        
        Generate a SQL query for the following natural language request:
        {natural_query}
        
        Return only the SQL query without any explanation.
        """

        payload = {
            "model": "llama3-8b-8192",
            "messages": [
                {"role": "system", "content": system_prompt},
                {"role": "user", "content": natural_query}
            ],
            "max_tokens": 500,
            "temperature": 0.1
        }

        try:
            self.logger.info(f"Sending request to Groq API for query: {natural_query}")
            response = requests.post(
                self.api_url,
                headers=self.headers,
                json=payload,
                timeout=30
            )
            response.raise_for_status()
            
            result = response.json()
            self.logger.info(f"Received response from Groq API")
            
            if 'choices' in result and result['choices']:
                sql_query = self._extract_sql_query(result['choices'][0]['message']['content'])
                if sql_query:
                    return {"success": True, "query": sql_query}
            
            return {"success": False, "error": "Failed to generate SQL query"}
            
        except requests.exceptions.RequestException as e:
            self.logger.error(f"API request error: {str(e)}")
            return {"success": False, "error": f"API request failed: {str(e)}"}

    def _extract_sql_query(self, content: str) -> Optional[str]:
        """Extract SQL query from LLM response"""
        # Remove markdown code blocks if present
        content = content.replace("```sql", "").replace("```", "").strip()
        
        # Basic validation
        if content.upper().startswith("SELECT"):
            return content
        
        return None

    def execute_query(self, sql_query: str) -> Dict[str, Any]:
        """Execute the SQL query and return results"""
        try:
            with sqlite3.connect(self.db_path) as conn:
                cursor = conn.cursor()
                cursor.execute(sql_query)
                results = cursor.fetchall()
                columns = [description[0] for description in cursor.description]
                
                return {
                    "success": True,
                    "columns": columns,
                    "results": results
                }
                
        except sqlite3.Error as e:
            self.logger.error(f"Database error: {e}")
            return {
                "success": False,
                "error": str(e)
            }