Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,307 +1,126 @@
|
|
1 |
import streamlit as st
|
2 |
-
import
|
3 |
-
import
|
4 |
-
import
|
|
|
5 |
import logging
|
6 |
-
from typing import Dict, Any, Optional
|
7 |
|
8 |
-
#
|
9 |
logging.basicConfig(level=logging.INFO)
|
|
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
}
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
}
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
introspection_query = """
|
32 |
-
{
|
33 |
-
"__schema" {
|
34 |
-
"types" {
|
35 |
-
"name"
|
36 |
-
}
|
37 |
-
}
|
38 |
-
}
|
39 |
-
"""
|
40 |
-
try:
|
41 |
-
response = requests.post(
|
42 |
-
SHOPIFY_URL,
|
43 |
-
headers=SHOPIFY_HEADERS,
|
44 |
-
json={"query": introspection_query}
|
45 |
-
)
|
46 |
-
response.raise_for_status()
|
47 |
-
return response.json()
|
48 |
-
except Exception as e:
|
49 |
-
logging.error(f"Error fetching schema: {str(e)}")
|
50 |
-
return {"error": str(e)}
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
def
|
54 |
-
"
|
55 |
-
|
56 |
-
prompt = f"""
|
57 |
-
Create a Shopify Admin API GraphQL query for this request: "{natural_language}"
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
* title: for product titles
|
63 |
-
* description: for product descriptions
|
64 |
-
* tag: for product tags
|
65 |
-
* product_type: for product types
|
66 |
-
- Example: query: "title:shirt OR description:cotton"
|
67 |
-
|
68 |
-
2. For price filters:
|
69 |
-
- Use variants.price for exact price
|
70 |
-
- Use variants.price:<number for maximum price
|
71 |
-
- Use variants.price:>number for minimum price
|
72 |
-
- Example: query: "variants.price:<50.00"
|
73 |
-
|
74 |
-
3. Include these fields in the response:
|
75 |
-
- id
|
76 |
-
- title
|
77 |
-
- description
|
78 |
-
- productType
|
79 |
-
- priceRangeV2 with minVariantPrice (amount and currencyCode)
|
80 |
-
- images (first: 1) with url
|
81 |
-
|
82 |
-
4. Use proper pagination with first: 250
|
83 |
|
84 |
-
|
85 |
-
|
|
|
|
|
86 |
|
87 |
-
|
88 |
-
"model": "llama3-8b-8192",
|
89 |
-
"messages": [{"role": "user", "content": prompt}],
|
90 |
-
"temperature": 0.1,
|
91 |
-
"max_tokens": 500,
|
92 |
-
}
|
93 |
-
|
94 |
try:
|
95 |
-
|
96 |
-
response.raise_for_status()
|
97 |
-
|
98 |
-
query = response.json()['choices'][0]['message']['content'].strip()
|
99 |
-
return clean_query(query)
|
100 |
except Exception as e:
|
101 |
-
|
102 |
-
return
|
103 |
|
104 |
-
|
105 |
-
"""
|
106 |
-
# Remove code block markers and quotes
|
107 |
-
query = re.sub(r'```(?:graphql)?\s*|\s*```|^["\']\s*|\s*["\']$', '', query)
|
108 |
-
|
109 |
-
# Extract the query content
|
110 |
-
query_match = re.search(r'({[\s\S]*})', query)
|
111 |
-
if not query_match:
|
112 |
-
return get_default_query()
|
113 |
-
|
114 |
-
query = query_match.group(1)
|
115 |
-
|
116 |
-
# Ensure the query has all required fields
|
117 |
-
if not all(field in query for field in ['id', 'title', 'description', 'productType', 'priceRangeV2', 'images']):
|
118 |
-
return get_default_query()
|
119 |
-
|
120 |
-
# Format the query
|
121 |
-
try:
|
122 |
-
formatted_query = format_query(query)
|
123 |
-
return formatted_query
|
124 |
-
except Exception as e:
|
125 |
-
logging.error(f"Query formatting error: {str(e)}")
|
126 |
-
return get_default_query()
|
127 |
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
lines = query.split('\n')
|
133 |
-
|
134 |
-
for line in lines:
|
135 |
-
line = line.strip()
|
136 |
-
|
137 |
-
# Adjust depth based on brackets
|
138 |
-
if '}' in line:
|
139 |
-
depth -= 1
|
140 |
-
|
141 |
-
# Add indentation
|
142 |
-
if line:
|
143 |
-
formatted.append(' ' * depth + line)
|
144 |
-
|
145 |
-
# Increase depth for next line if needed
|
146 |
-
if '{' in line:
|
147 |
-
depth += 1
|
148 |
-
|
149 |
-
return '\n'.join(formatted)
|
150 |
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
{
|
155 |
-
products(first: 250) {
|
156 |
-
edges {
|
157 |
-
node {
|
158 |
-
id
|
159 |
-
title
|
160 |
-
description
|
161 |
-
productType
|
162 |
-
priceRangeV2 {
|
163 |
-
minVariantPrice {
|
164 |
-
amount
|
165 |
-
currencyCode
|
166 |
-
}
|
167 |
-
}
|
168 |
-
images(first: 1) {
|
169 |
-
edges {
|
170 |
-
node {
|
171 |
-
url
|
172 |
-
}
|
173 |
-
}
|
174 |
-
}
|
175 |
-
}
|
176 |
-
}
|
177 |
-
}
|
178 |
-
}
|
179 |
-
""".strip()
|
180 |
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
response = requests.post(
|
185 |
-
SHOPIFY_URL,
|
186 |
-
headers=SHOPIFY_HEADERS,
|
187 |
-
json={"query": query}
|
188 |
-
)
|
189 |
-
response.raise_for_status()
|
190 |
-
return response.json()
|
191 |
-
except Exception as e:
|
192 |
-
logging.error(f"Query execution error: {str(e)}")
|
193 |
-
return {"error": str(e)}
|
194 |
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
error_message = response["errors"][0]["message"]
|
199 |
-
logging.error(f"Shopify API returned an error: {error_message}")
|
200 |
-
return {"error": error_message}
|
201 |
-
|
202 |
-
try:
|
203 |
-
products_data = response.get("data", {}).get("products", {}).get("edges", [])
|
204 |
-
if not products_data:
|
205 |
-
return {"error": "No products found in response"}
|
206 |
-
|
207 |
-
formatted = {"products": []}
|
208 |
-
for edge in products_data:
|
209 |
-
node = edge.get("node", {})
|
210 |
-
product = {
|
211 |
-
"title": node.get("title", ""),
|
212 |
-
"description": node.get("description", ""),
|
213 |
-
"productType": node.get("productType", ""),
|
214 |
-
"price": None,
|
215 |
-
"image": None
|
216 |
-
}
|
217 |
-
price_range = node.get("priceRangeV2", {}).get("minVariantPrice", {})
|
218 |
-
if price_range:
|
219 |
-
amount = price_range.get("amount")
|
220 |
-
currency = price_range.get("currencyCode")
|
221 |
-
if amount and currency:
|
222 |
-
product["price"] = f"{float(amount):.2f} {currency}"
|
223 |
-
|
224 |
-
images = node.get("images", {}).get("edges", [])
|
225 |
-
if images:
|
226 |
-
product["image"] = images[0].get("node", {}).get("url")
|
227 |
-
|
228 |
-
formatted["products"].append(product)
|
229 |
-
|
230 |
-
return formatted
|
231 |
-
except Exception as e:
|
232 |
-
logging.error(f"Response formatting error: {str(e)}")
|
233 |
-
return {"error": str(e)}
|
234 |
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
# Fetch schema for dynamic query generation
|
239 |
-
schema = fetch_graphql_schema()
|
240 |
-
|
241 |
-
if "error" in schema:
|
242 |
-
st.error(f"Failed to fetch schema: {schema['error']}")
|
243 |
-
return
|
244 |
-
|
245 |
-
# Display the available types or fields for user to choose from
|
246 |
-
types = schema.get("data", {}).get("__schema", {}).get("types", [])
|
247 |
-
st.subheader("Available Types in Shopify GraphQL Schema:")
|
248 |
-
for type_info in types:
|
249 |
-
st.write(type_info["name"])
|
250 |
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
- Find products under $50
|
255 |
-
- Search for products with "cotton" in description
|
256 |
-
- Find products tagged as "summer"
|
257 |
-
- Search for specific product types
|
258 |
-
""")
|
259 |
-
|
260 |
-
query = st.text_input(
|
261 |
-
"What products are you looking for?",
|
262 |
-
placeholder="e.g., Find t-shirts under $50"
|
263 |
-
)
|
264 |
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
formatted = format_response(response)
|
282 |
-
|
283 |
-
if "error" in formatted:
|
284 |
-
st.error(formatted["error"])
|
285 |
-
return
|
286 |
-
|
287 |
-
if formatted["products"]:
|
288 |
-
st.subheader(f"Found {len(formatted['products'])} products")
|
289 |
-
for product in formatted["products"]:
|
290 |
-
with st.container():
|
291 |
-
cols = st.columns([1, 2])
|
292 |
-
with cols[0]:
|
293 |
-
if product["image"]:
|
294 |
-
st.image(product["image"])
|
295 |
-
with cols[1]:
|
296 |
-
st.markdown(f"**{product['title']}**")
|
297 |
-
st.write(f"Type: {product['productType']}")
|
298 |
-
if product["price"]:
|
299 |
-
st.write(f"Price: {product['price']}")
|
300 |
-
st.write(product["description"])
|
301 |
-
st.divider()
|
302 |
-
else:
|
303 |
-
st.warning("No products found.")
|
304 |
|
305 |
-
|
306 |
-
|
307 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import os
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
6 |
import logging
|
|
|
7 |
|
8 |
+
# Set up logging
|
9 |
logging.basicConfig(level=logging.INFO)
|
10 |
+
logger = logging.getLogger(__name__)
|
11 |
|
12 |
+
class LLMService:
|
13 |
+
def __init__(self, db_path):
|
14 |
+
self.db_path = db_path
|
15 |
+
# Load tokenizer and model
|
16 |
+
self.tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-72B-Instruct")
|
17 |
+
self.model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-72B-Instruct")
|
|
|
18 |
|
19 |
+
def convert_to_sql_query(self, natural_query):
|
20 |
+
try:
|
21 |
+
# Tokenize input
|
22 |
+
inputs = self.tokenizer(f"Translate this to SQL: {natural_query}", return_tensors="pt")
|
23 |
+
# Generate output
|
24 |
+
outputs = self.model.generate(**inputs, max_length=512, num_beams=5)
|
25 |
+
# Decode output
|
26 |
+
sql_query = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
27 |
+
return {"success": True, "query": sql_query}
|
28 |
+
except Exception as e:
|
29 |
+
logger.error(f"Error generating SQL query: {e}")
|
30 |
+
return {"success": False, "error": str(e)}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
def execute_query(self, sql_query):
|
33 |
+
try:
|
34 |
+
import sqlite3
|
35 |
+
conn = sqlite3.connect(self.db_path)
|
36 |
+
cursor = conn.cursor()
|
37 |
+
cursor.execute(sql_query)
|
38 |
+
results = cursor.fetchall()
|
39 |
+
columns = [desc[0] for desc in cursor.description]
|
40 |
+
conn.close()
|
41 |
+
return {"success": True, "results": results, "columns": columns}
|
42 |
+
except Exception as e:
|
43 |
+
logger.error(f"Error executing SQL query: {e}")
|
44 |
+
return {"success": False, "error": str(e)}
|
45 |
|
46 |
+
def main():
|
47 |
+
st.title("Natural Language to SQL Query Converter")
|
48 |
+
st.write("Enter your question about the database in natural language.")
|
|
|
|
|
49 |
|
50 |
+
# Load environment variables
|
51 |
+
load_dotenv()
|
52 |
+
db_path = os.getenv("DB_PATH")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
+
if not db_path:
|
55 |
+
st.error("Missing database path in environment variables.")
|
56 |
+
logger.error("DB path not found in environment variables.")
|
57 |
+
return
|
58 |
|
59 |
+
# Initialize LLM Service
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
try:
|
61 |
+
llm_service = LLMService(db_path=db_path)
|
|
|
|
|
|
|
|
|
62 |
except Exception as e:
|
63 |
+
st.error(f"Error initializing service: {str(e)}")
|
64 |
+
return
|
65 |
|
66 |
+
# Input for natural language query
|
67 |
+
natural_query = st.text_area("Enter your query", "Show me all albums by artist 'Queen'", height=100)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
+
if st.button("Generate and Execute Query"):
|
70 |
+
if not natural_query.strip():
|
71 |
+
st.warning("Please enter a valid query.")
|
72 |
+
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
+
# Convert to SQL
|
75 |
+
with st.spinner("Generating SQL query..."):
|
76 |
+
sql_result = llm_service.convert_to_sql_query(natural_query)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
+
if not sql_result["success"]:
|
79 |
+
st.error(f"Error generating SQL query: {sql_result['error']}")
|
80 |
+
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
+
# Display generated SQL
|
83 |
+
st.subheader("Generated SQL Query:")
|
84 |
+
st.code(sql_result["query"], language="sql")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
+
# Execute query
|
87 |
+
with st.spinner("Executing query..."):
|
88 |
+
query_result = llm_service.execute_query(sql_result["query"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
+
if not query_result["success"]:
|
91 |
+
st.error(f"Error executing query: {query_result['error']}")
|
92 |
+
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
+
# Check if there are results
|
95 |
+
if query_result["results"]:
|
96 |
+
df = pd.DataFrame(query_result["results"], columns=query_result["columns"])
|
97 |
+
|
98 |
+
# Create a collapsible DataFrame using Streamlit's expander
|
99 |
+
with st.expander("Click to view query results as a DataFrame"):
|
100 |
+
st.dataframe(df)
|
101 |
+
|
102 |
+
# Extract product details from the JSON result and display them
|
103 |
+
json_results = df.to_dict(orient='records')
|
104 |
+
if "title" in json_results[0] and "images" in json_results[0] and "price" in json_results[0]:
|
105 |
+
st.subheader("Product Details:")
|
106 |
+
for product in json_results:
|
107 |
+
price = product.get("price", "N/A")
|
108 |
+
title = product.get("handle", "N/A")
|
109 |
+
src = product.get("src", "N/A")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
+
# Display product details in a neat format using columns for alignment
|
112 |
+
with st.container():
|
113 |
+
col1, col2, col3 = st.columns([1, 2, 3]) # Adjust column widths as needed
|
114 |
+
|
115 |
+
with col1:
|
116 |
+
st.image(src, use_container_width=True) # Display product image with container width
|
117 |
+
with col2:
|
118 |
+
st.write(f"**Price:** {price}") # Display price
|
119 |
+
st.write(f"**Title:** {title}") # Display title
|
120 |
+
with col3:
|
121 |
+
st.write(f"**Image Source:** [Link]( {src} )") # Link to the image if needed
|
122 |
+
else:
|
123 |
+
st.info("No results found.")
|
124 |
+
|
125 |
+
if __name__ == "__main__":
|
126 |
+
main()
|